Combining Philosophers

All the ideas for Ian Rumfitt, Manjit Kumar and ystein Linnebo

expand these ideas     |    start again     |     specify just one area for these philosophers


89 ideas

1. Philosophy / E. Nature of Metaphysics / 6. Metaphysics as Conceptual
Logic doesn't have a metaphysical basis, but nor can logic give rise to the metaphysics [Rumfitt]
2. Reason / D. Definition / 12. Paraphrase
'Some critics admire only one another' cannot be paraphrased in singular first-order [Linnebo]
3. Truth / A. Truth Problems / 1. Truth
The idea that there are unrecognised truths is basic to our concept of truth [Rumfitt]
3. Truth / B. Truthmakers / 7. Making Modal Truths
'True at a possibility' means necessarily true if what is said had obtained [Rumfitt]
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Semantics for propositions: 1) validity preserves truth 2) non-contradition 3) bivalence 4) truth tables [Rumfitt]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
The logic of metaphysical necessity is S5 [Rumfitt]
'Absolute necessity' would have to rest on S5 [Rumfitt]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
It is the second-order part of intuitionistic logic which actually negates some classical theorems [Rumfitt]
Intuitionists can accept Double Negation Elimination for decidable propositions [Rumfitt]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Most set theorists doubt bivalence for the Continuum Hypothesis, but still use classical logic [Rumfitt]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
The iterated conception of set requires continual increase in axiom strength [Rumfitt]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
A set may well not consist of its members; the empty set, for example, is a problem [Rumfitt]
A set can be determinate, because of its concept, and still have vague membership [Rumfitt]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
If the totality of sets is not well-defined, there must be doubt about the Power Set Axiom [Rumfitt]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
A comprehension axiom is 'predicative' if the formula has no bound second-order variables [Linnebo]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory says any formula defines a set, and coextensive sets are identical [Linnebo]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
If a sound conclusion comes from two errors that cancel out, the path of the argument must matter [Rumfitt]
Logic is higher-order laws which can expand the range of any sort of deduction [Rumfitt]
5. Theory of Logic / A. Overview of Logic / 3. Value of Logic
Logic guides thinking, but it isn't a substitute for it [Rumfitt]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
A 'pure logic' must be ontologically innocent, universal, and without presuppositions [Linnebo]
A pure logic is wholly general, purely formal, and directly known [Linnebo]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
The case for classical logic rests on its rules, much more than on the Principle of Bivalence [Rumfitt]
Classical logic rules cannot be proved, but various lines of attack can be repelled [Rumfitt]
If truth-tables specify the connectives, classical logic must rely on Bivalence [Rumfitt]
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Soundness in argument varies with context, and may be achieved very informally indeed [Rumfitt]
There is a modal element in consequence, in assessing reasoning from suppositions [Rumfitt]
We reject deductions by bad consequence, so logical consequence can't be deduction [Rumfitt]
Logical consequence is a relation that can extended into further statements [Rumfitt]
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Normal deduction presupposes the Cut Law [Rumfitt]
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
When faced with vague statements, Bivalence is not a compelling principle [Rumfitt]
5. Theory of Logic / D. Assumptions for Logic / 3. Contradiction
Contradictions include 'This is red and not coloured', as well as the formal 'B and not-B' [Rumfitt]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Standardly 'and' and 'but' are held to have the same sense by having the same truth table [Rumfitt]
In specifying a logical constant, use of that constant is quite unavoidable [Rumfitt]
The sense of a connective comes from primitively obvious rules of inference [Rumfitt]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Plural quantification depends too heavily on combinatorial and set-theoretic considerations [Linnebo]
Second-order quantification and plural quantification are different [Linnebo]
Traditionally we eliminate plurals by quantifying over sets [Linnebo]
Instead of complex objects like tables, plurally quantify over mereological atoms tablewise [Linnebo]
Can second-order logic be ontologically first-order, with all the benefits of second-order? [Linnebo]
Plural plurals are unnatural and need a first-level ontology [Linnebo]
Plural quantification may allow a monadic second-order theory with first-order ontology [Linnebo]
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Geometrical axioms in logic are nowadays replaced by inference rules (which imply the logical truths) [Rumfitt]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Introduction rules give deduction conditions, and Elimination says what can be deduced [Rumfitt]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
In classical semantics singular terms refer, and quantifiers range over domains [Linnebo]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths are just the assumption-free by-products of logical rules [Rumfitt]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The axioms of group theory are not assertions, but a definition of a structure [Linnebo]
To investigate axiomatic theories, mathematics needs its own foundational axioms [Linnebo]
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Monotonicity means there is a guarantee, rather than mere inductive support [Rumfitt]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Maybe an ordinal is a property of isomorphic well-ordered sets, and not itself a set [Rumfitt]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
A single object must not be counted twice, which needs knowledge of distinctness (negative identity) [Rumfitt]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals do not stand in a determinate order relation to zero [Rumfitt]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Cantor and Dedekind aimed to give analysis a foundation in set theory (rather than geometry) [Rumfitt]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
You can't prove consistency using a weaker theory, but you can use a consistent theory [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Some 'how many?' answers are not predications of a concept, like 'how many gallons?' [Rumfitt]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematics is the study of all possible patterns, and is thus bound to describe the world [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
'Deductivist' structuralism is just theories, with no commitment to objects, or modality [Linnebo]
Non-eliminative structuralism treats mathematical objects as positions in real abstract structures [Linnebo]
'Modal' structuralism studies all possible concrete models for various mathematical theories [Linnebo]
'Set-theoretic' structuralism treats mathematics as various structures realised among the sets [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Structuralism differs from traditional Platonism, because the objects depend ontologically on their structure [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Structuralism is right about algebra, but wrong about sets [Linnebo]
In mathematical structuralism the small depends on the large, which is the opposite of physical structures [Linnebo]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logical truth is true in all models, so mathematical objects can't be purely logical [Linnebo]
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Game Formalism has no semantics, and Term Formalism reduces the semantics [Linnebo]
7. Existence / C. Structure of Existence / 4. Ontological Dependence
There may be a one-way direction of dependence among sets, and among natural numbers [Linnebo]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
We speak of a theory's 'ideological commitments' as well as its 'ontological commitments' [Linnebo]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
Ordinary speakers posit objects without concern for ontology [Linnebo]
8. Modes of Existence / B. Properties / 4. Intrinsic Properties
An 'intrinsic' property is either found in every duplicate, or exists independent of all externals [Linnebo]
9. Objects / A. Existence of Objects / 1. Physical Objects
The modern concept of an object is rooted in quantificational logic [Linnebo]
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Vague membership of sets is possible if the set is defined by its concept, not its members [Rumfitt]
An object that is not clearly red or orange can still be red-or-orange, which sweeps up problem cases [Rumfitt]
The extension of a colour is decided by a concept's place in a network of contraries [Rumfitt]
10. Modality / A. Necessity / 3. Types of Necessity
A distinctive type of necessity is found in logical consequence [Rumfitt, by Hale/Hoffmann,A]
10. Modality / A. Necessity / 5. Metaphysical Necessity
Metaphysical modalities respect the actual identities of things [Rumfitt]
10. Modality / A. Necessity / 6. Logical Necessity
Logical necessity is when 'necessarily A' implies 'not-A is contradictory' [Rumfitt]
A logically necessary statement need not be a priori, as it could be unknowable [Rumfitt]
S5 is the logic of logical necessity [Rumfitt]
Narrow non-modal logical necessity may be metaphysical, but real logical necessity is not [Rumfitt]
10. Modality / B. Possibility / 1. Possibility
Since possibilities are properties of the world, calling 'red' the determination of a determinable seems right [Rumfitt]
If two possibilities can't share a determiner, they are incompatible [Rumfitt]
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
If a world is a fully determinate way things could have been, can anyone consider such a thing? [Rumfitt]
Possibilities are like possible worlds, but not fully determinate or complete [Rumfitt]
11. Knowledge Aims / A. Knowledge / 2. Understanding
Medieval logicians said understanding A also involved understanding not-A [Rumfitt]
13. Knowledge Criteria / B. Internal Justification / 3. Evidentialism / a. Evidence
In English 'evidence' is a mass term, qualified by 'little' and 'more' [Rumfitt]
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Bohr explained the periodic table and chemical properties of elements, using the quantum atom [Kumar]
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
We understand conditionals, but disagree over their truth-conditions [Rumfitt]
19. Language / C. Assigning Meanings / 3. Predicates
Predicates are 'distributive' or 'non-distributive'; do individuals do what the group does? [Linnebo]
19. Language / F. Communication / 3. Denial
The truth grounds for 'not A' are the possibilities incompatible with truth grounds for A [Rumfitt]
We learn 'not' along with affirmation, by learning to either affirm or deny a sentence [Rumfitt]