Combining Philosophers

All the ideas for J.B. Watson, Robert C. Stalnaker and David Bostock

expand these ideas     |    start again     |     specify just one area for these philosophers


187 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
I don't think Lewis's cost-benefit reflective equilibrium approach offers enough guidance [Stalnaker]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions are wrong, because they change the set that is being defined? [Bostock]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Venn Diagrams map three predicates into eight compartments, then look for the conclusion [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
'Disjunctive Normal Form' is ensuring that no conjunction has a disjunction within its scope [Bostock]
'Conjunctive Normal Form' is ensuring that no disjunction has a conjunction within its scope [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Disjunction' says that Γ,φ∨ψ|= iff Γ,φ|= and Γ,ψ|= [Bostock]
'Assumptions' says that a formula entails itself (φ|=φ) [Bostock]
'Thinning' allows that if premisses entail a conclusion, then adding further premisses makes no difference [Bostock]
The 'conditional' is that Γ|=φ→ψ iff Γ,φ|=ψ [Bostock]
'Cutting' allows that if x is proved, and adding y then proves z, you can go straight to z [Bostock]
'Negation' says that Γ,¬φ|= iff Γ|=φ [Bostock]
'Conjunction' says that Γ|=φ∧ψ iff Γ|=φ and Γ|=ψ [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
A logic with ¬ and → needs three axiom-schemas and one rule as foundation [Bostock]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / a. Systems of modal logic
Non-S5 can talk of contingent or necessary necessities [Stalnaker]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
To say there could have been people who don't exist, but deny those possible things, rejects Barcan [Stalnaker, by Rumfitt]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Classical interdefinitions of logical constants and quantifiers is impossible in intuitionism [Bostock]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
A 'free' logic can have empty names, and a 'universally free' logic can have empty domains [Bostock]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
There is no single agreed structure for set theory [Bostock]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A 'proper class' cannot be a member of anything [Bostock]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We could add axioms to make sets either as small or as large as possible [Bostock]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
In modal set theory, sets only exist in a possible world if that world contains all of its members [Stalnaker]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice relies on reference to sets that we are unable to describe [Bostock]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Replacement enforces a 'limitation of size' test for the existence of sets [Bostock]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is not decidable: there is no test of whether any formula is valid [Bostock]
The completeness of first-order logic implies its compactness [Bostock]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Truth is the basic notion in classical logic [Bostock]
Elementary logic cannot distinguish clearly between the finite and the infinite [Bostock]
Fictional characters wreck elementary logic, as they have contradictions and no excluded middle [Bostock]
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
The syntactic turnstile |- φ means 'there is a proof of φ' or 'φ is a theorem' [Bostock]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Validity is a conclusion following for premises, even if there is no proof [Bostock]
It seems more natural to express |= as 'therefore', rather than 'entails' [Bostock]
Γ|=φ is 'entails'; Γ|= is 'is inconsistent'; |=φ is 'valid' [Bostock]
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
MPP: 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ' (omit Γs for Detachment) [Bostock]
MPP is a converse of Deduction: If Γ |- φ→ψ then Γ,φ|-ψ [Bostock]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Logical space is abstracted from the actual world [Stalnaker]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
|= α=α and α=β |= φ(α/ξ ↔ φ(β/ξ) fix identity [Bostock]
If we are to express that there at least two things, we need identity [Bostock]
The sign '=' is a two-place predicate expressing that 'a is the same thing as b' (a=b) [Bostock]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
We regiment to get semantic structure, for evaluating arguments, and understanding complexities [Stalnaker]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Truth-functors are usually held to be defined by their truth-tables [Bostock]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / e. or
In 'S was F or some other than S was F', the disjuncts need S, but the whole disjunction doesn't [Stalnaker]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'zero-place' function just has a single value, so it is a name [Bostock]
A 'total' function ranges over the whole domain, a 'partial' function over appropriate inputs [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
In logic, a name is just any expression which refers to a particular single object [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / c. Names as referential
To understand a name (unlike a description) picking the thing out is sufficient? [Stalnaker]
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
An expression is only a name if it succeeds in referring to a real object [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite desciptions resemble names, but can't actually be names, if they don't always refer [Bostock]
Because of scope problems, definite descriptions are best treated as quantifiers [Bostock]
Definite descriptions are usually treated like names, and are just like them if they uniquely refer [Bostock]
We are only obliged to treat definite descriptions as non-names if only the former have scope [Bostock]
Definite descriptions don't always pick out one thing, as in denials of existence, or errors [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Names do not have scope problems (e.g. in placing negation), but Russell's account does have that problem [Bostock]
5. Theory of Logic / G. Quantification / 1. Quantification
'Prenex normal form' is all quantifiers at the beginning, out of the scope of truth-functors [Bostock]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
If we allow empty domains, we must allow empty names [Bostock]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Substitutional quantification is just standard if all objects in the domain have a name [Bostock]
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
An 'informal proof' is in no particular system, and uses obvious steps and some ordinary English [Bostock]
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Quantification adds two axiom-schemas and a new rule [Bostock]
Axiom systems from Frege, Russell, Church, Lukasiewicz, Tarski, Nicod, Kleene, Quine... [Bostock]
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
'Conditonalised' inferences point to the Deduction Theorem: If Γ,φ|-ψ then Γ|-φ→ψ [Bostock]
Proof by Assumptions can always be reduced to Proof by Axioms, using the Deduction Theorem [Bostock]
The Deduction Theorem and Reductio can 'discharge' assumptions - they aren't needed for the new truth [Bostock]
The Deduction Theorem greatly simplifies the search for proof [Bostock]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
The Deduction Theorem is what licenses a system of natural deduction [Bostock]
Natural deduction takes proof from assumptions (with its rules) as basic, and axioms play no part [Bostock]
Excluded middle is an introduction rule for negation, and ex falso quodlibet will eliminate it [Bostock]
In natural deduction we work from the premisses and the conclusion, hoping to meet in the middle [Bostock]
Natural deduction rules for → are the Deduction Theorem (→I) and Modus Ponens (→E) [Bostock]
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
Tableau proofs use reduction - seeking an impossible consequence from an assumption [Bostock]
A completed open branch gives an interpretation which verifies those formulae [Bostock]
Non-branching rules add lines, and branching rules need a split; a branch with a contradiction is 'closed' [Bostock]
In a tableau proof no sequence is established until the final branch is closed; hypotheses are explored [Bostock]
Unlike natural deduction, semantic tableaux have recipes for proving things [Bostock]
A tree proof becomes too broad if its only rule is Modus Ponens [Bostock]
Tableau rules are all elimination rules, gradually shortening formulae [Bostock]
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
Each line of a sequent calculus is a conclusion of previous lines, each one explicitly recorded [Bostock]
A sequent calculus is good for comparing proof systems [Bostock]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Interpretation by assigning objects to names, or assigning them to variables first [Bostock, by PG]
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionality is built into ordinary logic semantics; names have objects, predicates have sets of objects [Bostock]
If an object has two names, truth is undisturbed if the names are swapped; this is Extensionality [Bostock]
5. Theory of Logic / K. Features of Logics / 2. Consistency
For 'negation-consistent', there is never |-(S)φ and |-(S)¬φ [Bostock]
A proof-system is 'absolutely consistent' iff we don't have |-(S)φ for every formula [Bostock]
A set of formulae is 'inconsistent' when there is no interpretation which can make them all true [Bostock]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Inconsistency or entailment just from functors and quantifiers is finitely based, if compact [Bostock]
Compactness means an infinity of sequents on the left will add nothing new [Bostock]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox considers the meaning of 'The least number not named by this name' [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Each addition changes the ordinality but not the cardinality, prior to aleph-1 [Bostock]
ω + 1 is a new ordinal, but its cardinality is unchanged [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
A cardinal is the earliest ordinal that has that number of predecessors [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Aleph-1 is the first ordinal that exceeds aleph-0 [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Instead of by cuts or series convergence, real numbers could be defined by axioms [Bostock]
The number of reals is the number of subsets of the natural numbers [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
For Eudoxus cuts in rationals are unique, but not every cut makes a real number [Bostock]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals are not actually contradictory, because they can be non-standard real numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Modern axioms of geometry do not need the real numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
The Peano Axioms describe a unique structure [Bostock]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Ordinary or mathematical induction assumes for the first, then always for the next, and hence for all [Bostock]
Complete induction assumes for all numbers less than n, then also for n, and hence for all numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Hume's Principle is a definition with existential claims, and won't explain numbers [Bostock]
Many things will satisfy Hume's Principle, so there are many interpretations of it [Bostock]
There are many criteria for the identity of numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege makes numbers sets to solve the Caesar problem, but maybe Caesar is a set! [Bostock]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Numbers can't be positions, if nothing decides what position a given number has [Bostock]
Structuralism falsely assumes relations to other numbers are numbers' only properties [Bostock]
6. Mathematics / C. Sources of Mathematics / 3. Mathematical Nominalism
Nominalism about mathematics is either reductionist, or fictionalist [Bostock]
Nominalism as based on application of numbers is no good, because there are too many applications [Bostock]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Actual measurement could never require the precision of the real numbers [Bostock]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Ordinals are mainly used adjectively, as in 'the first', 'the second'... [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Simple type theory has 'levels', but ramified type theory has 'orders' [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Neo-logicists agree that HP introduces number, but also claim that it suffices for the job [Bostock]
Neo-logicists meet the Caesar problem by saying Hume's Principle is unique to number [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
If Hume's Principle is the whole story, that implies structuralism [Bostock]
Many crucial logicist definitions are in fact impredicative [Bostock]
Treating numbers as objects doesn't seem like logic, since arithmetic fixes their totality [Bostock]
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Higher cardinalities in sets are just fairy stories [Bostock]
A fairy tale may give predictions, but only a true theory can give explanations [Bostock]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
The best version of conceptualism is predicativism [Bostock]
Conceptualism fails to grasp mathematical properties, infinity, and objective truth values [Bostock]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
If abstracta only exist if they are expressible, there can only be denumerably many of them [Bostock]
Predicativism makes theories of huge cardinals impossible [Bostock]
If mathematics rests on science, predicativism may be the best approach [Bostock]
If we can only think of what we can describe, predicativism may be implied [Bostock]
The predicativity restriction makes a difference with the real numbers [Bostock]
The usual definitions of identity and of natural numbers are impredicative [Bostock]
7. Existence / A. Nature of Existence / 1. Nature of Existence
Some say what exists must do so, and nothing else could possible exist [Stalnaker]
A nominalist view says existence is having spatio-temporal location [Stalnaker]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
Relations can be one-many (at most one on the left) or many-one (at most one on the right) [Bostock]
A relation is not reflexive, just because it is transitive and symmetrical [Bostock]
8. Modes of Existence / B. Properties / 1. Nature of Properties
Properties are modal, involving possible situations where they are exemplified [Stalnaker]
8. Modes of Existence / B. Properties / 10. Properties as Predicates
I accept a hierarchy of properties of properties of properties [Stalnaker]
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / a. Dispositions
Dispositions have modal properties, of which properties things would have counterfactually [Stalnaker]
9. Objects / A. Existence of Objects / 4. Impossible objects
Predicates can't apply to what doesn't exist [Stalnaker]
9. Objects / C. Structure of Objects / 7. Substratum
For the bare particular view, properties must be features, not just groups of objects [Stalnaker]
Possible worlds allow separating all the properties, without hitting a bare particular [Stalnaker]
9. Objects / D. Essence of Objects / 7. Essence and Necessity / a. Essence as necessary properties
An essential property is one had in all the possible worlds where a thing exists [Stalnaker]
'Socrates is essentially human' seems to say nothing could be Socrates if it was not human [Stalnaker]
9. Objects / D. Essence of Objects / 7. Essence and Necessity / b. Essence not necessities
Necessarily self-identical, or being what it is, or its world-indexed properties, aren't essential [Stalnaker]
9. Objects / D. Essence of Objects / 15. Against Essentialism
Bare particular anti-essentialism makes no sense within modal logic semantics [Stalnaker]
9. Objects / F. Identity among Objects / 5. Self-Identity
If non-existent things are self-identical, they are just one thing - so call it the 'null object' [Bostock]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The bundle theory makes the identity of indiscernibles a necessity, since the thing is the properties [Stalnaker]
10. Modality / A. Necessity / 3. Types of Necessity
Strong necessity is always true; weak necessity is cannot be false [Stalnaker]
10. Modality / A. Necessity / 6. Logical Necessity
The idea that anything which can be proved is necessary has a problem with empty names [Bostock]
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
In nearby worlds where A is true, 'if A,B' is true or false if B is true or false [Stalnaker]
10. Modality / B. Possibility / 8. Conditionals / d. Non-truthfunction conditionals
Conditionals are true if minimal revision of the antecedent verifies the consequent [Stalnaker, by Read]
10. Modality / C. Sources of Modality / 2. Necessity as Primitive
Necessity and possibility are fundamental, and there can be no reductive analysis of them [Stalnaker]
10. Modality / C. Sources of Modality / 4. Necessity from Concepts
The necessity of a proposition concerns reality, not our words or concepts [Stalnaker]
Conceptual possibilities are metaphysical possibilities we can conceive of [Stalnaker]
10. Modality / C. Sources of Modality / 5. Modality from Actuality
Modal concepts are central to the actual world, and shouldn't need extravagant metaphysics [Stalnaker]
10. Modality / D. Knowledge of Modality / 3. A Posteriori Necessary
Critics say there are just an a priori necessary part, and an a posteriori contingent part [Stalnaker]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
A 'centred' world is an ordered triple of world, individual and time [Stalnaker]
If it might be true, it might be true in particular ways, and possible worlds describe such ways [Stalnaker]
Possible worlds are ontologically neutral, but a commitment to possibilities remains [Stalnaker]
Possible worlds allow discussion of modality without controversial modal auxiliaries [Stalnaker]
10. Modality / E. Possible worlds / 1. Possible Worlds / d. Possible worlds actualism
Given actualism, how can there be possible individuals, other than the actual ones? [Stalnaker]
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / a. Nature of possible worlds
A possible world is the ontological analogue of hypothetical beliefs [Stalnaker]
We can take 'ways things might have been' as irreducible elements in our ontology [Stalnaker, by Lycan]
Kripke's possible worlds are methodological, not metaphysical [Stalnaker]
Possible worlds are properties [Stalnaker]
Possible worlds don't reduce modality, they regiment it to reveal its structure [Stalnaker]
I think of worlds as cells (rather than points) in logical space [Stalnaker]
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Why imagine that Babe Ruth might be a billiard ball; nothing useful could be said about the ball [Stalnaker]
10. Modality / E. Possible worlds / 3. Transworld Objects / b. Rigid designation
Rigid designation seems to presuppose that differing worlds contain the same individuals [Stalnaker]
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Unlike Lewis, I defend an actualist version of counterpart theory [Stalnaker]
If possible worlds really differ, I can't be in more than one at a time [Stalnaker]
If counterparts exist strictly in one world only, this seems to be extreme invariant essentialism [Stalnaker]
Modal properties depend on the choice of a counterpart, which is unconstrained by metaphysics [Stalnaker]
10. Modality / E. Possible worlds / 3. Transworld Objects / d. Haecceitism
Anti-haecceitism says there is no more to an individual than meeting some qualitative conditions [Stalnaker]
18. Thought / C. Content / 6. Broad Content
Meanings aren't in the head, but that is because they are abstract [Stalnaker]
How can we know what we are thinking, if content depends on something we don't know? [Stalnaker]
19. Language / A. Nature of Meaning / 1. Meaning
If you don't know what you say you can't mean it; what people say usually fits what they mean [Stalnaker]
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
In the use of a name, many individuals are causally involved, but they aren't all the referent [Stalnaker]
One view says the causal story is built into the description that is the name's content [Stalnaker]
19. Language / C. Assigning Meanings / 2. Semantics
'Descriptive' semantics gives a system for a language; 'foundational' semantics give underlying facts [Stalnaker]
We still lack an agreed semantics for quantifiers in natural language [Stalnaker]
19. Language / C. Assigning Meanings / 3. Predicates
A (modern) predicate is the result of leaving a gap for the name in a sentence [Bostock]
19. Language / C. Assigning Meanings / 6. Truth-Conditions Semantics
To understand an utterance, you must understand what the world would be like if it is true [Stalnaker]
19. Language / C. Assigning Meanings / 8. Possible Worlds Semantics
Extensional semantics has individuals and sets; modal semantics has intensions, functions of world to extension [Stalnaker]
Possible world semantics may not reduce modality, but it can explain it [Stalnaker]
19. Language / C. Assigning Meanings / 10. Two-Dimensional Semantics
Two-D says that a posteriori is primary and contingent, and the necessity is the secondary intension [Stalnaker]
In one view, the secondary intension is metasemantic, about how the thinker relates to the content [Stalnaker]
19. Language / D. Propositions / 1. Propositions
I take propositions to be truth conditions [Stalnaker]
A theory of propositions at least needs primitive properties of consistency and of truth [Stalnaker]
19. Language / D. Propositions / 3. Concrete Propositions
A 'Russellian proposition' is an ordered sequence of individual, properties and relations [Stalnaker]
Propositions presumably don't exist if the things they refer to don't exist [Stalnaker]
19. Language / F. Communication / 2. Assertion
An assertion aims to add to the content of a context [Stalnaker, by Magidor]
In logic a proposition means the same when it is and when it is not asserted [Bostock]
19. Language / F. Communication / 5. Pragmatics / b. Implicature
An assertion is an attempt to rule out certain possibilities, narrowing things down for good planning [Stalnaker, by Schroeter]
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
I could take a healthy infant and train it up to be any type of specialist I choose [Watson,JB]