Combining Philosophers

All the ideas for JP Burgess / G Rosen, Bernard Linsky and Wilfrid Hodges

expand these ideas     |    start again     |     specify just one area for these philosophers


44 ideas

2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions eliminate descriptions from contexts [Linsky,B]
The idea that groups of concepts could be 'implicitly defined' was abandoned [Hodges,W]
2. Reason / D. Definition / 8. Impredicative Definition
'Impredictative' definitions fix a class in terms of the greater class to which it belongs [Linsky,B]
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
'True' is only occasionally useful, as in 'everything Fermat believed was true' [Burgess/Rosen]
4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
Modal logic gives an account of metalogical possibility, not metaphysical possibility [Burgess/Rosen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Reducibility says any impredicative function has an appropriate predicative replacement [Linsky,B]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
The paradoxes are only a problem for Frege; Cantor didn't assume every condition determines a set [Burgess/Rosen]
4. Formal Logic / G. Formal Mereology / 1. Mereology
Mereology implies that acceptance of entities entails acceptance of conglomerates [Burgess/Rosen]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is the study of sound argument, or of certain artificial languages (or applying the latter to the former) [Hodges,W]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Since first-order languages are complete, |= and |- have the same meaning [Hodges,W]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
|= in model-theory means 'logical consequence' - it holds in all models [Hodges,W]
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
A relation is either a set of sets of sets, or a set of sets [Burgess/Rosen]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite descriptions, unlike proper names, have a logical structure [Linsky,B]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Definite descriptions theory eliminates the King of France, but not the Queen of England [Linsky,B]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
A formula needs an 'interpretation' of its constants, and a 'valuation' of its variables [Hodges,W]
There are three different standard presentations of semantics [Hodges,W]
I |= φ means that the formula φ is true in the interpretation I [Hodges,W]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
|= should be read as 'is a model for' or 'satisfies' [Hodges,W]
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionalism means what is true of a function is true of coextensive functions [Linsky,B]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory studies formal or natural language-interpretation using set-theory [Hodges,W]
A 'structure' is an interpretation specifying objects and classes of quantification [Hodges,W]
Models in model theory are structures, not sets of descriptions [Hodges,W]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Down Löwenheim-Skolem: if a countable language has a consistent theory, that has a countable model [Hodges,W]
Up Löwenheim-Skolem: if infinite models, then arbitrarily large models [Hodges,W]
5. Theory of Logic / K. Features of Logics / 6. Compactness
If a first-order theory entails a sentence, there is a finite subset of the theory which entails it [Hodges,W]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
The paradoxes no longer seem crucial in critiques of set theory [Burgess/Rosen]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
We should talk about possible existence, rather than actual existence, of numbers [Burgess/Rosen]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
First-order logic can't discriminate between one infinite cardinal and another [Hodges,W]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
A 'set' is a mathematically well-behaved class [Hodges,W]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Structuralism and nominalism are normally rivals, but might work together [Burgess/Rosen]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Number words became nouns around the time of Plato [Burgess/Rosen]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
The task of logicism was to define by logic the concepts 'number', 'successor' and '0' [Linsky,B]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Higher types are needed to distinguished intensional phenomena which are coextensive [Linsky,B]
Types are 'ramified' when there are further differences between the type of quantifier and its range [Linsky,B]
The ramified theory subdivides each type, according to the range of the variables [Linsky,B]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Did logicism fail, when Russell added three nonlogical axioms, to save mathematics? [Linsky,B]
For those who abandon logicism, standard set theory is a rival option [Linsky,B]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
Abstract/concrete is a distinction of kind, not degree [Burgess/Rosen]
Much of what science says about concrete entities is 'abstraction-laden' [Burgess/Rosen]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / b. Levels of abstraction
Mathematics has ascended to higher and higher levels of abstraction [Burgess/Rosen]
Abstraction is on a scale, of sets, to attributes, to type-formulas, to token-formulas [Burgess/Rosen]
8. Modes of Existence / B. Properties / 11. Properties as Sets
Construct properties as sets of objects, or say an object must be in the set to have the property [Linsky,B]
18. Thought / E. Abstraction / 2. Abstracta by Selection
The old debate classified representations as abstract, not entities [Burgess/Rosen]
27. Natural Reality / C. Space / 2. Space
If space is really just a force-field, then it is a physical entity [Burgess/Rosen]