Combining Philosophers

All the ideas for Lycophron, Robert S. Wolf and Pascal Engel

expand these ideas     |    start again     |     specify just one area for these philosophers


36 ideas

1. Philosophy / F. Analytic Philosophy / 3. Analysis of Preconditions
In "if and only if" (iff), "if" expresses the sufficient condition, and "only if" the necessary condition [Engel]
3. Truth / A. Truth Problems / 5. Truth Bearers
Are truth-bearers propositions, or ideas/beliefs, or sentences/utterances? [Engel]
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
The redundancy theory gets rid of facts, for 'it is a fact that p' just means 'p' [Engel]
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
We can't explain the corresponding structure of the world except by referring to our thoughts [Engel]
3. Truth / D. Coherence Truth / 1. Coherence Truth
The coherence theory says truth is an internal relationship between groups of truth-bearers [Engel]
3. Truth / D. Coherence Truth / 2. Coherence Truth Critique
Any coherent set of beliefs can be made more coherent by adding some false beliefs [Engel]
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Deflationism seems to block philosophers' main occupation, asking metatheoretical questions [Engel]
Deflationism cannot explain why we hold beliefs for reasons [Engel]
3. Truth / H. Deflationary Truth / 3. Minimalist Truth
Maybe there is no more to be said about 'true' than there is about the function of 'and' in logic [Engel]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'tautology' must include connectives [Wolf,RS]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Deduction Theorem: T∪{P}|-Q, then T|-(P→Q), which justifies Conditional Proof [Wolf,RS]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
Universal Generalization: If we prove P(x) with no special assumptions, we can conclude ∀xP(x) [Wolf,RS]
Universal Specification: ∀xP(x) implies P(t). True for all? Then true for an instance [Wolf,RS]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
Existential Generalization (or 'proof by example'): if we can say P(t), then we can say something is P [Wolf,RS]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / e. Axiom of the Empty Set IV
Empty Set: ∃x∀y ¬(y∈x). The unique empty set exists [Wolf,RS]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension Axiom: if a collection is clearly specified, it is a set [Wolf,RS]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
In first-order logic syntactic and semantic consequence (|- and |=) nicely coincide [Wolf,RS]
First-order logic is weakly complete (valid sentences are provable); we can't prove every sentence or its negation [Wolf,RS]
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
Deflationism must reduce bivalence ('p is true or false') to excluded middle ('p or not-p') [Engel]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory reveals the structures of mathematics [Wolf,RS]
Model theory 'structures' have a 'universe', some 'relations', some 'functions', and some 'constants' [Wolf,RS]
Model theory uses sets to show that mathematical deduction fits mathematical truth [Wolf,RS]
First-order model theory rests on completeness, compactness, and the Löwenheim-Skolem-Tarski theorem [Wolf,RS]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'isomorphism' is a bijection that preserves all structural components [Wolf,RS]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The LST Theorem is a serious limitation of first-order logic [Wolf,RS]
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a theory is complete, only a more powerful language can strengthen it [Wolf,RS]
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Most deductive logic (unlike ordinary reasoning) is 'monotonic' - we don't retract after new givens [Wolf,RS]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal is an equivalence class of well-orderings, or a transitive set whose members are transitive [Wolf,RS]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Modern mathematics has unified all of its objects within set theory [Wolf,RS]
11. Knowledge Aims / A. Knowledge / 4. Belief / a. Beliefs
The Humean theory of motivation is that beliefs may be motivators as well as desires [Engel]
11. Knowledge Aims / A. Knowledge / 4. Belief / c. Aim of beliefs
Our beliefs are meant to fit the world (i.e. be true), where we want the world to fit our desires [Engel]
11. Knowledge Aims / A. Knowledge / 4. Belief / d. Cause of beliefs
'Evidentialists' say, and 'voluntarists' deny, that we only believe on the basis of evidence [Engel]
12. Knowledge Sources / D. Empiricism / 3. Pragmatism
Pragmatism is better understood as a theory of belief than as a theory of truth [Engel]
13. Knowledge Criteria / A. Justification Problems / 3. Internal or External / a. Pro-internalism
Knowledge is mind and knowing 'cohabiting' [Lycophron, by Aristotle]
13. Knowledge Criteria / C. External Justification / 5. Controlling Beliefs
We cannot directly control our beliefs, but we can control the causes of our involuntary beliefs [Engel]
17. Mind and Body / C. Functionalism / 1. Functionalism
Mental states as functions are second-order properties, realised by first-order physical properties [Engel]