Combining Philosophers

All the ideas for Lynch,MP/Glasgow,JM, Keith Hossack and ystein Linnebo

expand these ideas     |    start again     |     specify just one area for these philosophers


65 ideas

2. Reason / D. Definition / 12. Paraphrase
'Some critics admire only one another' cannot be paraphrased in singular first-order [Linnebo]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice is a non-logical principle of set-theory [Hossack]
The Axiom of Choice guarantees a one-one correspondence from sets to ordinals [Hossack]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
A comprehension axiom is 'predicative' if the formula has no bound second-order variables [Linnebo]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory says any formula defines a set, and coextensive sets are identical [Linnebo]
Predicativism says only predicated sets exist [Hossack]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception has to appropriate Replacement, to justify the ordinals [Hossack]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size justifies Replacement, but then has to appropriate Power Set [Hossack]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe we reduce sets to ordinals, rather than the other way round [Hossack]
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
Extensional mereology needs two definitions and two axioms [Hossack]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
A 'pure logic' must be ontologically innocent, universal, and without presuppositions [Linnebo]
A pure logic is wholly general, purely formal, and directly known [Linnebo]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / d. and
The connective 'and' can have an order-sensitive meaning, as 'and then' [Hossack]
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
'Before' and 'after' are not two relations, but one relation with two orders [Hossack]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Plural definite descriptions pick out the largest class of things that fit the description [Hossack]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Plural quantification depends too heavily on combinatorial and set-theoretic considerations [Linnebo]
Second-order quantification and plural quantification are different [Linnebo]
Traditionally we eliminate plurals by quantifying over sets [Linnebo]
Instead of complex objects like tables, plurally quantify over mereological atoms tablewise [Linnebo]
Can second-order logic be ontologically first-order, with all the benefits of second-order? [Linnebo]
Plural plurals are unnatural and need a first-level ontology [Linnebo]
Plural quantification may allow a monadic second-order theory with first-order ontology [Linnebo]
Plural reference will refer to complex facts without postulating complex things [Hossack]
Plural reference is just an abbreviation when properties are distributive, but not otherwise [Hossack]
A plural comprehension principle says there are some things one of which meets some condition [Hossack]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
In classical semantics singular terms refer, and quantifiers range over domains [Linnebo]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The axioms of group theory are not assertions, but a definition of a structure [Linnebo]
To investigate axiomatic theories, mathematics needs its own foundational axioms [Linnebo]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
Plural language can discuss without inconsistency things that are not members of themselves [Hossack]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The theory of the transfinite needs the ordinal numbers [Hossack]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
I take the real numbers to be just lengths [Hossack]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Transfinite ordinals are needed in proof theory, and for recursive functions and computability [Hossack]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
A plural language gives a single comprehensive induction axiom for arithmetic [Hossack]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
You can't prove consistency using a weaker theory, but you can use a consistent theory [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
In arithmetic singularists need sets as the instantiator of numeric properties [Hossack]
Set theory is the science of infinity [Hossack]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Numbers are properties, not sets (because numbers are magnitudes) [Hossack]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematics is the study of all possible patterns, and is thus bound to describe the world [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
'Deductivist' structuralism is just theories, with no commitment to objects, or modality [Linnebo]
Non-eliminative structuralism treats mathematical objects as positions in real abstract structures [Linnebo]
'Modal' structuralism studies all possible concrete models for various mathematical theories [Linnebo]
'Set-theoretic' structuralism treats mathematics as various structures realised among the sets [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Structuralism differs from traditional Platonism, because the objects depend ontologically on their structure [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Structuralism is right about algebra, but wrong about sets [Linnebo]
In mathematical structuralism the small depends on the large, which is the opposite of physical structures [Linnebo]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
We can only mentally construct potential infinities, but maths needs actual infinities [Hossack]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logical truth is true in all models, so mathematical objects can't be purely logical [Linnebo]
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Game Formalism has no semantics, and Term Formalism reduces the semantics [Linnebo]
7. Existence / C. Structure of Existence / 3. Levels of Reality
A necessary relation between fact-levels seems to be a further irreducible fact [Lynch/Glasgow]
7. Existence / C. Structure of Existence / 4. Ontological Dependence
There may be a one-way direction of dependence among sets, and among natural numbers [Linnebo]
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
If some facts 'logically supervene' on some others, they just redescribe them, adding nothing [Lynch/Glasgow]
7. Existence / D. Theories of Reality / 6. Physicalism
Nonreductive materialism says upper 'levels' depend on lower, but don't 'reduce' [Lynch/Glasgow]
The hallmark of physicalism is that each causal power has a base causal power under it [Lynch/Glasgow]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
We speak of a theory's 'ideological commitments' as well as its 'ontological commitments' [Linnebo]
We are committed to a 'group' of children, if they are sitting in a circle [Hossack]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
Ordinary speakers posit objects without concern for ontology [Linnebo]
8. Modes of Existence / B. Properties / 4. Intrinsic Properties
An 'intrinsic' property is either found in every duplicate, or exists independent of all externals [Linnebo]
9. Objects / A. Existence of Objects / 1. Physical Objects
The modern concept of an object is rooted in quantificational logic [Linnebo]
9. Objects / C. Structure of Objects / 5. Composition of an Object
Complex particulars are either masses, or composites, or sets [Hossack]
The relation of composition is indispensable to the part-whole relation for individuals [Hossack]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
Leibniz's Law argues against atomism - water is wet, unlike water molecules [Hossack]
The fusion of five rectangles can decompose into more than five parts that are rectangles [Hossack]
18. Thought / A. Modes of Thought / 1. Thought
A thought can refer to many things, but only predicate a universal and affirm a state of affairs [Hossack]
19. Language / C. Assigning Meanings / 3. Predicates
Predicates are 'distributive' or 'non-distributive'; do individuals do what the group does? [Linnebo]
27. Natural Reality / C. Space / 2. Space
We could ignore space, and just talk of the shape of matter [Hossack]