Combining Philosophers

All the ideas for Michael Tooley, Edwin D. Mares and Francis of Marchia

expand these ideas     |    start again     |     specify just one area for these philosophers


39 ideas

1. Philosophy / E. Nature of Metaphysics / 7. Against Metaphysics
After 1903, Husserl avoids metaphysical commitments [Mares]
2. Reason / A. Nature of Reason / 9. Limits of Reason
Inconsistency doesn't prevent us reasoning about some system [Mares]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Intuitionist logic looks best as natural deduction [Mares]
Intuitionism as natural deduction has no rule for negation [Mares]
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
Three-valued logic is useful for a theory of presupposition [Mares]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Material implication (and classical logic) considers nothing but truth values for implications [Mares]
In classical logic the connectives can be related elegantly, as in De Morgan's laws [Mares]
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
Excluded middle standardly implies bivalence; attacks use non-contradiction, De M 3, or double negation [Mares]
Standard disjunction and negation force us to accept the principle of bivalence [Mares]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
The connectives are studied either through model theory or through proof theory [Mares]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Many-valued logics lack a natural deduction system [Mares]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Situation semantics for logics: not possible worlds, but information in situations [Mares]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is semantic, but non-contradiction is syntactic [Mares]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The truth of the axioms doesn't matter for pure mathematics, but it does for applied [Mares]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Mathematics is relations between properties we abstract from experience [Mares]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
For intuitionists there are not numbers and sets, but processes of counting and collecting [Mares]
9. Objects / D. Essence of Objects / 13. Nominal Essence
If you remove the accidents from a horse and a lion, the intellect can't tell them apart [Francis of Marchia]
10. Modality / D. Knowledge of Modality / 2. A Priori Contingent
Light in straight lines is contingent a priori; stipulated as straight, because they happen to be so [Mares]
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
Aristotelians dislike the idea of a priori judgements from pure reason [Mares]
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Empiricists say rationalists mistake imaginative powers for modal insights [Mares]
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
The most popular view is that coherent beliefs explain one another [Mares]
14. Science / B. Scientific Theories / 3. Instrumentalism
Operationalism defines concepts by our ways of measuring them [Mares]
18. Thought / D. Concepts / 2. Origin of Concepts / b. Empirical concepts
Aristotelian justification uses concepts abstracted from experience [Mares]
18. Thought / D. Concepts / 4. Structure of Concepts / c. Classical concepts
The essence of a concept is either its definition or its conceptual relations? [Mares]
19. Language / C. Assigning Meanings / 2. Semantics
In 'situation semantics' our main concepts are abstracted from situations [Mares]
19. Language / C. Assigning Meanings / 8. Possible Worlds Semantics
Possible worlds semantics has a nice compositional account of modal statements [Mares]
19. Language / D. Propositions / 3. Concrete Propositions
Unstructured propositions are sets of possible worlds; structured ones have components [Mares]
26. Natural Theory / C. Causation / 2. Types of cause
Causation is either direct realism, Humean reduction, non-Humean reduction or theoretical realism [Tooley]
Causation distinctions: reductionism/realism; Humean/non-Humean states; observable/non-observable [Tooley]
26. Natural Theory / C. Causation / 4. Naturalised causation
Reductionists can't explain accidents, uninstantiated laws, probabilities, or the existence of any laws [Tooley]
26. Natural Theory / C. Causation / 5. Direction of causation
We can only reduce the direction of causation to the direction of time if we are realist about the latter [Tooley]
26. Natural Theory / C. Causation / 8. Particular Causation / a. Observation of causation
Causation is directly observable in pressure on one's body, and in willed action [Tooley]
26. Natural Theory / C. Causation / 8. Particular Causation / e. Probabilistic causation
Quantum physics suggests that the basic laws of nature are probabilistic [Tooley]
Probabilist laws are compatible with effects always or never happening [Tooley]
The actual cause may not be the most efficacious one [Tooley]
26. Natural Theory / C. Causation / 9. General Causation / a. Constant conjunction
In counterfactual worlds there are laws with no instances, so laws aren't supervenient on actuality [Tooley]
26. Natural Theory / C. Causation / 9. General Causation / b. Nomological causation
Explaining causation in terms of laws can't explain the direction of causation [Tooley]
Causation is a concept of a relation the same in all worlds, so it can't be a physical process [Tooley]
27. Natural Reality / C. Space / 3. Points in Space
Maybe space has points, but processes always need regions with a size [Mares]