Combining Philosophers

All the ideas for New Scientist writers, James Woodward and Herbert B. Enderton

expand these ideas     |    start again     |     specify just one area for these philosophers


106 ideas

4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Until the 1960s the only semantics was truth-tables [Enderton]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
'dom R' indicates the 'domain' of objects having a relation [Enderton]
'fld R' indicates the 'field' of all objects in the relation [Enderton]
'ran R' indicates the 'range' of objects being related to [Enderton]
We write F:A→B to indicate that A maps into B (the output of F on A is in B) [Enderton]
'F(x)' is the unique value which F assumes for a value of x [Enderton]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
∈ says the whole set is in the other; ⊆ says the members of the subset are in the other [Enderton]
A relation is 'symmetric' on a set if every ordered pair has the relation in both directions [Enderton]
A relation is 'transitive' if it can be carried over from two ordered pairs to a third [Enderton]
The 'ordered pair' <x,y> is defined to be {{x}, {x,y}} [Enderton]
A 'linear or total ordering' must be transitive and satisfy trichotomy [Enderton]
The 'powerset' of a set is all the subsets of a given set [Enderton]
Two sets are 'disjoint' iff their intersection is empty [Enderton]
A 'domain' of a relation is the set of members of ordered pairs in the relation [Enderton]
A 'relation' is a set of ordered pairs [Enderton]
A 'function' is a relation in which each object is related to just one other object [Enderton]
A function 'maps A into B' if the relating things are set A, and the things related to are all in B [Enderton]
A function 'maps A onto B' if the relating things are set A, and the things related to are set B [Enderton]
A relation is 'reflexive' on a set if every member bears the relation to itself [Enderton]
A relation satisfies 'trichotomy' if all pairs are either relations, or contain identical objects [Enderton]
A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second [Enderton]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Note that {Φ} =/= Φ, because Φ ∈ {Φ} but Φ ∉ Φ [Enderton]
The empty set may look pointless, but many sets can be constructed from it [Enderton]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
The singleton is defined using the pairing axiom (as {x,x}) [Enderton]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
An 'equivalence relation' is a reflexive, symmetric and transitive binary relation [Enderton]
We 'partition' a set into distinct subsets, according to each relation on its objects [Enderton]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Fraenkel added Replacement, to give a theory of ordinal numbers [Enderton]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can only define functions if Choice tells us which items are involved [Enderton]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Inference not from content, but from the fact that it was said, is 'conversational implicature' [Enderton]
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Validity is either semantic (what preserves truth), or proof-theoretic (following procedures) [Enderton]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth or tautology is a logical consequence of the empty set [Enderton]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A truth assignment to the components of a wff 'satisfy' it if the wff is then True [Enderton]
5. Theory of Logic / K. Features of Logics / 3. Soundness
A proof theory is 'sound' if its valid inferences entail semantic validity [Enderton]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A proof theory is 'complete' if semantically valid inferences entail proof-theoretic validity [Enderton]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Proof in finite subsets is sufficient for proof in an infinite set [Enderton]
5. Theory of Logic / K. Features of Logics / 7. Decidability
Expressions are 'decidable' if inclusion in them (or not) can be proved [Enderton]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
For a reasonable language, the set of valid wff's can always be enumerated [Enderton]
7. Existence / A. Nature of Existence / 5. Reason for Existence
Current physics says matter and antimatter should have reduced to light at the big bang [New Sci.]
CP violation shows a decay imbalance in matter and antimatter, leading to matter's dominance [New Sci.]
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
Sentences with 'if' are only conditionals if they can read as A-implies-B [Enderton]
14. Science / A. Basis of Science / 4. Prediction
A system can infer the structure of the world by making predictions about it [New Sci.]
14. Science / D. Explanation / 2. Types of Explanation / g. Causal explanations
An explanation is a causal graph [Woodward,J, by Strevens]
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
Neural networks can extract the car-ness of a car, or the chair-ness of a chair [New Sci.]
18. Thought / A. Modes of Thought / 5. Rationality / a. Rationality
No one has yet devised a rationality test [New Sci.]
18. Thought / A. Modes of Thought / 7. Intelligence
About a third of variation in human intelligence is environmental [New Sci.]
People can be highly intelligent, yet very stupid [New Sci.]
18. Thought / B. Mechanics of Thought / 1. Psychology
Psychologists measure personality along five dimensions [New Sci.]
27. Natural Reality / A. Classical Physics / 1. Mechanics / d. Gravity
Gravity is unusual, in that it always attracts and never repels [New Sci.]
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / d. Entropy
Entropy is the only time-asymmetric law, so time may be linked to entropy [New Sci.]
27. Natural Reality / B. Modern Physics / 1. Relativity / b. General relativity
In the Big Bang general relativity fails, because gravity is too powerful [New Sci.]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Quantum electrodynamics incorporates special relativity and quantum mechanics [New Sci.]
Photons have zero rest mass, so virtual photons have infinite range [New Sci.]
Light moves at a constant space-time speed, but its direction is in neither space nor time [New Sci.]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
In the standard model all the fundamental force fields merge at extremely high energies [New Sci.]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Electrons move fast, so are subject to special relativity [New Sci.]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Quantum states are measured by external time, of unknown origin [New Sci.]
The Schrödinger equation describes the evolution of an object's wave function in Hilbert space [New Sci.]
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / a. Chromodynamics
The strong force is repulsive at short distances, strong at medium, and fades at long [New Sci.]
Gluons, the particles carrying the strong force, interact because of their colour charge [New Sci.]
The strong force binds quarks tight, and the nucleus more weakly [New Sci.]
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / b. Quarks
Three different colours of quark (as in the proton) can cancel out to give no colour [New Sci.]
Quarks in threes can build hadrons with spin ½ or with spin 3/2 [New Sci.]
Classifying hadrons revealed two symmetry patterns, produced by three basic elements [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / b. Standard model
The weak force explains beta decay, and the change of type by quarks and leptons [New Sci.]
Three particles enable the weak force: W+ and W- are charged, and Z° is not [New Sci.]
The weak force particles are heavy, so the force has a short range [New Sci.]
Why do the charges of the very different proton and electron perfectly match up? [New Sci.]
The Standard Model cannot explain dark energy, survival of matter, gravity, or force strength [New Sci.]
The four fundamental forces (gravity, electromagnetism, weak and strong) are the effects of particles [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / c. Particle properties
Particles are spread out, with wave-like properties, and higher energy shortens the wavelength [New Sci.]
Spin is a built-in ration of angular momentum [New Sci.]
Quarks have red, green or blue colour charge (akin to electric charge) [New Sci.]
Fermions, with spin ½, are antisocial, and cannot share quantum states [New Sci.]
Spin is akin to rotation, and is easily measured in a magnetic field [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / d. Mass
The mass of protons and neutrinos is mostly binding energy, not the quarks [New Sci.]
Gravitional mass turns out to be the same as inertial mass [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / e. Protons
Neutrons are slightly heavier than protons, and decay into them by emitting an electron [New Sci.]
Top, bottom, charm and strange quarks quickly decay into up and down [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / f. Neutrinos
Neutrinos were proposed as the missing energy in neutron beta decay [New Sci.]
Only neutrinos spin anticlockwise [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / g. Anti-matter
Standard antineutrinos have opposite spin and opposite lepton number [New Sci.]
27. Natural Reality / B. Modern Physics / 5. Unified Models / a. Electro-weak unity
The symmetry of unified electromagnetic and weak forces was broken by the Higgs field [New Sci.]
27. Natural Reality / B. Modern Physics / 5. Unified Models / b. String theory
It is impossible for find a model of actuality among the innumerable models in string theory [New Sci.]
String theory is now part of 11-dimensional M-Theory, involving p-branes [New Sci.]
In string theory space-time has a grainy indivisible substructure [New Sci.]
String theory needs at least 10 space-time dimensions [New Sci.]
Supersymmetric string theory can be expressed using loop quantum gravity [New Sci.]
String theory might be tested by colliding strings to make bigger 'stringballs' [New Sci.]
String theory offers a quantum theory of gravity, by describing the graviton [New Sci.]
27. Natural Reality / B. Modern Physics / 5. Unified Models / c. Supersymmetry
Only supersymmetry offers to incorporate gravity into the scheme [New Sci.]
Supersymmetry has extra heavy bosons and heavy fermions [New Sci.]
Supersymmetry says particles and superpartners were unities, but then split [New Sci.]
The evidence for supersymmetry keeps failing to appear [New Sci.]
27. Natural Reality / C. Space / 2. Space
Hilbert Space is an abstraction representing all possible states of a quantum system [New Sci.]
27. Natural Reality / C. Space / 4. Substantival Space
The Higgs field means even low energy space is not empty [New Sci.]
27. Natural Reality / C. Space / 6. Space-Time
Einstein's merging of time with space has left us confused about the nature of time [New Sci.]
Relativity makes time and space jointly basic; quantum theory splits them, and prioritises time [New Sci.]
Space-time may be a geometrical manifestation of quantum entanglement [New Sci.]
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Quantum theory relies on a clock outside the system - but where is it located? [New Sci.]
27. Natural Reality / D. Time / 2. Passage of Time / g. Time's arrow
Entropy is puzzling, so we may need to build new laws which include time directionality [New Sci.]
27. Natural Reality / E. Cosmology / 7. Black Holes
General relativity predicts black holes, as former massive stars, and as galaxy centres [New Sci.]
Black holes have entropy, but general relativity says they are unstructured, and lack entropy [New Sci.]
27. Natural Reality / E. Cosmology / 8. Dark Matter
84.5 percent of the universe is made of dark matter [New Sci.]
Dark matter must have mass, to produce gravity, and no electric charge, to not reflect light [New Sci.]
27. Natural Reality / F. Chemistry / 1. Chemistry
We are halfway to synthesising any molecule we want [New Sci.]
27. Natural Reality / F. Chemistry / 3. Periodic Table
Chemistry just needs the periodic table, and protons, electrons and neutrinos [New Sci.]