Combining Philosophers

All the ideas for Paul Benacerraf, Wolfgang Knne and E.J. Lemmon

expand these ideas     |    start again     |     specify just one area for these philosophers


84 ideas

2. Reason / D. Definition / 12. Paraphrase
The idea of 'making' can be mere conceptual explanation (like 'because') [Künne]
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
'Contradictory' propositions always differ in truth-value [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
We write the conditional 'if P (antecedent) then Q (consequent)' as P→Q [Lemmon]
That proposition that either P or Q is their 'disjunction', written P∨Q [Lemmon]
That proposition that both P and Q is their 'conjunction', written P∧Q [Lemmon]
The sign |- may be read as 'therefore' [Lemmon]
We write the 'negation' of P (not-P) as ¬ [Lemmon]
We write 'P if and only if Q' as P↔Q; it is also P iff Q, or (P→Q)∧(Q→P) [Lemmon]
If A and B are 'interderivable' from one another we may write A -||- B [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'well-formed formula' follows the rules for variables, ¬, →, ∧, ∨, and ↔ [Lemmon]
The 'scope' of a connective is the connective, the linked formulae, and the brackets [Lemmon]
A 'substitution-instance' is a wff formed by consistent replacing variables with wffs [Lemmon]
A wff is 'inconsistent' if all assignments to variables result in the value F [Lemmon]
'Contrary' propositions are never both true, so that ¬(A∧B) is a tautology [Lemmon]
Two propositions are 'equivalent' if they mirror one another's truth-value [Lemmon]
A wff is 'contingent' if produces at least one T and at least one F [Lemmon]
'Subcontrary' propositions are never both false, so that A∨B is a tautology [Lemmon]
A 'implies' B if B is true whenever A is true (so that A→B is tautologous) [Lemmon]
A wff is a 'tautology' if all assignments to variables result in the value T [Lemmon]
A 'theorem' is the conclusion of a provable sequent with zero assumptions [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
∧I: Given A and B, we may derive A∧B [Lemmon]
CP: Given a proof of B from A as assumption, we may derive A→B [Lemmon]
MPP: Given A and A→B, we may derive B [Lemmon]
∨E: Derive C from A∨B, if C can be derived both from A and from B [Lemmon]
DN: Given A, we may derive ¬¬A [Lemmon]
A: we may assume any proposition at any stage [Lemmon]
∧E: Given A∧B, we may derive either A or B separately [Lemmon]
RAA: If assuming A will prove B∧¬B, then derive ¬A [Lemmon]
MTT: Given ¬B and A→B, we derive ¬A [Lemmon]
∨I: Given either A or B separately, we may derive A∨B [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Modus tollendo ponens' (MTP) says ¬P, P ∨ Q |- Q [Lemmon]
'Modus ponendo tollens' (MPT) says P, ¬(P ∧ Q) |- ¬Q [Lemmon]
We can change conditionals into negated conjunctions with P→Q -||- ¬(P ∧ ¬Q) [Lemmon]
We can change conditionals into disjunctions with P→Q -||- ¬P ∨ Q [Lemmon]
De Morgan's Laws make negated conjunctions/disjunctions into non-negated disjunctions/conjunctions [Lemmon]
The Distributive Laws can rearrange a pair of conjunctions or disjunctions [Lemmon]
We can change conjunctions into negated conditionals with P→Q -||- ¬(P → ¬Q) [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth-tables are good for showing invalidity [Lemmon]
A truth-table test is entirely mechanical, but this won't work for more complex logic [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 4. Soundness of PL
If any of the nine rules of propositional logic are applied to tautologies, the result is a tautology [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 5. Completeness of PL
Propositional logic is complete, since all of its tautologous sequents are derivable [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / a. Symbols of PC
Write '(∀x)(...)' to mean 'take any x: then...', and '(∃x)(...)' to mean 'there is an x such that....' [Lemmon]
'Gm' says m has property G, and 'Pmn' says m has relation P to n [Lemmon]
The 'symbols' are bracket, connective, term, variable, predicate letter, reverse-E [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / b. Terminology of PC
Our notation uses 'predicate-letters' (for 'properties'), 'variables', 'proper names', 'connectives' and 'quantifiers' [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
Universal Elimination (UE) lets us infer that an object has F, from all things having F [Lemmon]
With finite named objects, we can generalise with &-Intro, but otherwise we need ∀-Intro [Lemmon]
UE all-to-one; UI one-to-all; EI arbitrary-to-one; EE proof-to-one [Lemmon]
Predicate logic uses propositional connectives and variables, plus new introduction and elimination rules [Lemmon]
Universal elimination if you start with the universal, introduction if you want to end with it [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
If there is a finite domain and all objects have names, complex conjunctions can replace universal quantifiers [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
'Some Frenchmen are generous' is rendered by (∃x)(Fx→Gx), and not with the conditional → [Lemmon]
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
The paradoxes of material implication are P |- Q → P, and ¬P |- P → Q [Lemmon]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematical truth is always compromising between ordinary language and sensible epistemology [Benacerraf]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Obtaining numbers by abstraction is impossible - there are too many; only a rule could give them, in order [Benacerraf]
We must explain how we know so many numbers, and recognise ones we haven't met before [Benacerraf]
There are no such things as numbers [Benacerraf]
Numbers can't be sets if there is no agreement on which sets they are [Benacerraf]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
If numbers are basically the cardinals (Frege-Russell view) you could know some numbers in isolation [Benacerraf]
Benacerraf says numbers are defined by their natural ordering [Benacerraf, by Fine,K]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
To understand finite cardinals, it is necessary and sufficient to understand progressions [Benacerraf, by Wright,C]
A set has k members if it one-one corresponds with the numbers less than or equal to k [Benacerraf]
To explain numbers you must also explain cardinality, the counting of things [Benacerraf]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
We can count intransitively (reciting numbers) without understanding transitive counting of items [Benacerraf]
Someone can recite numbers but not know how to count things; but not vice versa [Benacerraf]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The application of a system of numbers is counting and measurement [Benacerraf]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
For Zermelo 3 belongs to 17, but for Von Neumann it does not [Benacerraf]
The successor of x is either x and all its members, or just the unit set of x [Benacerraf]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Disputes about mathematical objects seem irrelevant, and mathematicians cannot resolve them [Benacerraf, by Friend]
No particular pair of sets can tell us what 'two' is, just by one-to-one correlation [Benacerraf, by Lowe]
If ordinal numbers are 'reducible to' some set-theory, then which is which? [Benacerraf]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
An adequate account of a number must relate it to its series [Benacerraf]
If any recursive sequence will explain ordinals, then it seems to be the structure which matters [Benacerraf]
The job is done by the whole system of numbers, so numbers are not objects [Benacerraf]
The number 3 defines the role of being third in a progression [Benacerraf]
Number words no more have referents than do the parts of a ruler [Benacerraf]
Mathematical objects only have properties relating them to other 'elements' of the same structure [Benacerraf]
How can numbers be objects if order is their only property? [Benacerraf, by Putnam]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Number-as-objects works wholesale, but fails utterly object by object [Benacerraf]
Realists have semantics without epistemology, anti-realists epistemology but bad semantics [Benacerraf, by Colyvan]
The platonist view of mathematics doesn't fit our epistemology very well [Benacerraf]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are not predicates, as they function very differently from adjectives [Benacerraf]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
The set-theory paradoxes mean that 17 can't be the class of all classes with 17 members [Benacerraf]
9. Objects / F. Identity among Objects / 6. Identity between Objects
Identity statements make sense only if there are possible individuating conditions [Benacerraf]