Combining Philosophers

All the ideas for Penelope Maddy, Carl Hempel and Euclid

expand these ideas     |    start again     |     specify just one area for these philosophers


74 ideas

2. Reason / E. Argument / 6. Conclusive Proof
Proof reveals the interdependence of truths, as well as showing their certainty [Euclid, by Frege]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
If you pick an arbitrary triangle, things proved of it are true of all triangles [Euclid, by Lemmon]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
'Forcing' can produce new models of ZFC from old models [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
A Large Cardinal Axiom would assert ever-increasing stages in the hierarchy [Maddy]
New axioms are being sought, to determine the size of the continuum [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
The Axiom of Extensionality seems to be analytic [Maddy]
Extensional sets are clearer, simpler, unique and expressive [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The Axiom of Infinity states Cantor's breakthrough that launched modern mathematics [Maddy]
Infinite sets are essential for giving an account of the real numbers [Maddy]
Axiom of Infinity: completed infinite collections can be treated mathematically [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set Axiom is needed for, and supported by, accounts of the continuum [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
The Axiom of Foundation says every set exists at a level in the set hierarchy [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Efforts to prove the Axiom of Choice have failed [Maddy]
Modern views say the Choice set exists, even if it can't be constructed [Maddy]
A large array of theorems depend on the Axiom of Choice [Maddy]
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Axiom of Reducibility: propositional functions are extensionally predicative [Maddy]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The Iterative Conception says everything appears at a stage, derived from the preceding appearances [Maddy]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is a vague intuition that over-large sets may generate paradoxes [Maddy]
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
The master science is physical objects divided into sets [Maddy]
Maddy replaces pure sets with just objects and perceived sets of objects [Maddy, by Shapiro]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Henkin semantics is more plausible for plural logic than for second-order logic [Maddy]
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Critics of if-thenism say that not all starting points, even consistent ones, are worth studying [Maddy]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
'Propositional functions' are propositions with a variable as subject or predicate [Maddy]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Hilbert's geometry and Dedekind's real numbers were role models for axiomatization [Maddy]
If two mathematical themes coincide, that suggest a single deep truth [Maddy]
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Euclid's geometry is synthetic, but Descartes produced an analytic version of it [Euclid, by Resnik]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
An assumption that there is a largest prime leads to a contradiction [Euclid, by Brown,JR]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
A unit is that according to which each existing thing is said to be one [Euclid]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Postulate 2 says a line can be extended continuously [Euclid, by Shapiro]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Completed infinities resulted from giving foundations to calculus [Maddy]
Cantor and Dedekind brought completed infinities into mathematics [Maddy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
An 'inaccessible' cardinal cannot be reached by union sets or power sets [Maddy]
Infinity has degrees, and large cardinals are the heart of set theory [Maddy]
For any cardinal there is always a larger one (so there is no set of all sets) [Maddy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Theorems about limits could only be proved once the real numbers were understood [Maddy]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid relied on obvious properties in diagrams, as well as on his axioms [Potter on Euclid]
Euclid's parallel postulate defines unique non-intersecting parallel lines [Euclid, by Friend]
Euclid needs a principle of continuity, saying some lines must intersect [Shapiro on Euclid]
Euclid says we can 'join' two points, but Hilbert says the straight line 'exists' [Euclid, by Bernays]
Modern geometries only accept various parts of the Euclid propositions [Russell on Euclid]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Euclid's common notions or axioms are what we must have if we are to learn anything at all [Euclid, by Roochnik]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The extension of concepts is not important to me [Maddy]
In the ZFC hierarchy it is impossible to form Frege's set of all three-element sets [Maddy]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege solves the Caesar problem by explicitly defining each number [Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory (unlike the Peano postulates) can explain why multiplication is commutative [Maddy]
Standardly, numbers are said to be sets, which is neat ontology and epistemology [Maddy]
Numbers are properties of sets, just as lengths are properties of physical objects [Maddy]
A natural number is a property of sets [Maddy, by Oliver]
Making set theory foundational to mathematics leads to very fruitful axioms [Maddy]
Unified set theory gives a final court of appeal for mathematics [Maddy]
Set theory brings mathematics into one arena, where interrelations become clearer [Maddy]
Identifying geometric points with real numbers revealed the power of set theory [Maddy]
The line of rationals has gaps, but set theory provided an ordered continuum [Maddy]
Set-theory tracks the contours of mathematical depth and fruitfulness [Maddy]
Mathematics rests on the logic of proofs, and on the set theoretic axioms [Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Number theory doesn't 'reduce' to set theory, because sets have number properties [Maddy]
Sets exist where their elements are, but numbers are more like universals [Maddy]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
If mathematical objects exist, how can we know them, and which objects are they? [Maddy]
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition doesn't support much mathematics, and we should question its reliability [Maddy, by Shapiro]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We know mind-independent mathematical truths through sets, which rest on experience [Maddy, by Jenkins]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Scientists posit as few entities as possible, but set theorist posit as many as possible [Maddy]
Maybe applications of continuum mathematics are all idealisations [Maddy]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The connection of arithmetic to perception has been idealised away in modern infinitary mathematics [Maddy]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are unusual as adjectives; we don't say 'is five', and numbers always come first [Maddy]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
We can get arithmetic directly from HP; Law V was used to get HP from the definition of number [Maddy]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
The theoretical indispensability of atoms did not at first convince scientists that they were real [Maddy]
14. Science / A. Basis of Science / 4. Prediction
Explanatory facts also predict, and predictive facts also explain [Hempel, by Okasha]
14. Science / D. Explanation / 1. Explanation / b. Aims of explanation
Scientific explanation aims at a unifying account of underlying structures and processes [Hempel]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
For Hempel, explanations are deductive-nomological or probabilistic-statistical [Hempel, by Bird]
The covering-law model is for scientific explanation; historical explanation is quite different [Hempel]
14. Science / D. Explanation / 2. Types of Explanation / g. Causal explanations
Hempel rejects causation as part of explanation [Hempel, by Salmon]
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Science idealises the earth's surface, the oceans, continuities, and liquids [Maddy]