Combining Philosophers

All the ideas for Penelope Maddy, John P. Burgess and Jason Crease

expand these ideas     |    start again     |     specify just one area for these philosophers


92 ideas

4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
With four tense operators, all complex tenses reduce to fourteen basic cases [Burgess]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The temporal Barcan formulas fix what exists, which seems absurd [Burgess]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Is classical logic a part of intuitionist logic, or vice versa? [Burgess]
It is still unsettled whether standard intuitionist logic is complete [Burgess]
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
Relevance logic's → is perhaps expressible by 'if A, then B, for that reason' [Burgess]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
'Forcing' can produce new models of ZFC from old models [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
A Large Cardinal Axiom would assert ever-increasing stages in the hierarchy [Maddy]
New axioms are being sought, to determine the size of the continuum [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
The Axiom of Extensionality seems to be analytic [Maddy]
Extensional sets are clearer, simpler, unique and expressive [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Axiom of Infinity: completed infinite collections can be treated mathematically [Maddy]
The Axiom of Infinity states Cantor's breakthrough that launched modern mathematics [Maddy]
Infinite sets are essential for giving an account of the real numbers [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set Axiom is needed for, and supported by, accounts of the continuum [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
The Axiom of Foundation says every set exists at a level in the set hierarchy [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Efforts to prove the Axiom of Choice have failed [Maddy]
Modern views say the Choice set exists, even if it can't be constructed [Maddy]
A large array of theorems depend on the Axiom of Choice [Maddy]
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Axiom of Reducibility: propositional functions are extensionally predicative [Maddy]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The Iterative Conception says everything appears at a stage, derived from the preceding appearances [Maddy]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is a vague intuition that over-large sets may generate paradoxes [Maddy]
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
The master science is physical objects divided into sets [Maddy]
Maddy replaces pure sets with just objects and perceived sets of objects [Maddy, by Shapiro]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
Technical people see logic as any formal system that can be studied, not a study of argument validity [Burgess]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic neglects the non-mathematical, such as temporality or modality [Burgess]
The Cut Rule expresses the classical idea that entailment is transitive [Burgess]
Classical logic neglects counterfactuals, temporality and modality, because maths doesn't use them [Burgess]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Henkin semantics is more plausible for plural logic than for second-order logic [Maddy]
5. Theory of Logic / A. Overview of Logic / 9. Philosophical Logic
Philosophical logic is a branch of logic, and is now centred in computer science [Burgess]
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Critics of if-thenism say that not all starting points, even consistent ones, are worth studying [Maddy]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
'Propositional functions' are propositions with a variable as subject or predicate [Maddy]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Formalising arguments favours lots of connectives; proving things favours having very few [Burgess]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / e. or
Asserting a disjunction from one disjunct seems odd, but can be sensible, and needed in maths [Burgess]
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
All occurrences of variables in atomic formulas are free [Burgess]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
The denotation of a definite description is flexible, rather than rigid [Burgess]
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
'Induction' and 'recursion' on complexity prove by connecting a formula to its atomic components [Burgess]
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
The sequent calculus makes it possible to have proof without transitivity of entailment [Burgess]
We can build one expanding sequence, instead of a chain of deductions [Burgess]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
'Tautologies' are valid formulas of classical sentential logic - or substitution instances in other logics [Burgess]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Validity (for truth) and demonstrability (for proof) have correlates in satisfiability and consistency [Burgess]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Models leave out meaning, and just focus on truth values [Burgess]
We only need to study mathematical models, since all other models are isomorphic to these [Burgess]
We aim to get the technical notion of truth in all models matching intuitive truth in all instances [Burgess]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Hilbert's geometry and Dedekind's real numbers were role models for axiomatization [Maddy]
If two mathematical themes coincide, that suggest a single deep truth [Maddy]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The Liar seems like a truth-value 'gap', but dialethists see it as a 'glut' [Burgess]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Completed infinities resulted from giving foundations to calculus [Maddy]
Cantor and Dedekind brought completed infinities into mathematics [Maddy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Infinity has degrees, and large cardinals are the heart of set theory [Maddy]
For any cardinal there is always a larger one (so there is no set of all sets) [Maddy]
An 'inaccessible' cardinal cannot be reached by union sets or power sets [Maddy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Theorems about limits could only be proved once the real numbers were understood [Maddy]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The extension of concepts is not important to me [Maddy]
In the ZFC hierarchy it is impossible to form Frege's set of all three-element sets [Maddy]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege solves the Caesar problem by explicitly defining each number [Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory (unlike the Peano postulates) can explain why multiplication is commutative [Maddy]
Standardly, numbers are said to be sets, which is neat ontology and epistemology [Maddy]
Numbers are properties of sets, just as lengths are properties of physical objects [Maddy]
A natural number is a property of sets [Maddy, by Oliver]
Making set theory foundational to mathematics leads to very fruitful axioms [Maddy]
Unified set theory gives a final court of appeal for mathematics [Maddy]
Set theory brings mathematics into one arena, where interrelations become clearer [Maddy]
Identifying geometric points with real numbers revealed the power of set theory [Maddy]
The line of rationals has gaps, but set theory provided an ordered continuum [Maddy]
Set theory is the standard background for modern mathematics [Burgess]
Set-theory tracks the contours of mathematical depth and fruitfulness [Maddy]
Mathematics rests on the logic of proofs, and on the set theoretic axioms [Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Number theory doesn't 'reduce' to set theory, because sets have number properties [Maddy]
Sets exist where their elements are, but numbers are more like universals [Maddy]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralists take the name 'R' of the reals to be a variable ranging over structures, not a structure [Burgess]
There is no one relation for the real number 2, as relations differ in different models [Burgess]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If set theory is used to define 'structure', we can't define set theory structurally [Burgess]
Abstract algebra concerns relations between models, not common features of all the models [Burgess]
How can mathematical relations be either internal, or external, or intrinsic? [Burgess]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
If mathematical objects exist, how can we know them, and which objects are they? [Maddy]
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition doesn't support much mathematics, and we should question its reliability [Maddy, by Shapiro]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We know mind-independent mathematical truths through sets, which rest on experience [Maddy, by Jenkins]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Scientists posit as few entities as possible, but set theorist posit as many as possible [Maddy]
Maybe applications of continuum mathematics are all idealisations [Maddy]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The connection of arithmetic to perception has been idealised away in modern infinitary mathematics [Maddy]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are unusual as adjectives; we don't say 'is five', and numbers always come first [Maddy]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
We can get arithmetic directly from HP; Law V was used to get HP from the definition of number [Maddy]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
The theoretical indispensability of atoms did not at first convince scientists that they were real [Maddy]
10. Modality / A. Necessity / 4. De re / De dicto modality
De re modality seems to apply to objects a concept intended for sentences [Burgess]
10. Modality / A. Necessity / 6. Logical Necessity
General consensus is S5 for logical modality of validity, and S4 for proof [Burgess]
Logical necessity has two sides - validity and demonstrability - which coincide in classical logic [Burgess]
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
Three conditionals theories: Materialism (material conditional), Idealism (true=assertable), Nihilism (no truth) [Burgess]
It is doubtful whether the negation of a conditional has any clear meaning [Burgess]
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Science idealises the earth's surface, the oceans, continuities, and liquids [Maddy]
17. Mind and Body / A. Mind-Body Dualism / 5. Parallelism
If parallelism is true, how does the mind know about the body? [Crease]