Combining Philosophers

All the ideas for Pittacus, JP Burgess / G Rosen and Ernst Zermelo

expand these ideas     |    start again     |     specify just one area for these philosophers


37 ideas

2. Reason / D. Definition / 8. Impredicative Definition
Predicative definitions are acceptable in mathematics if they distinguish objects, rather than creating them? [Zermelo, by Lavine]
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
'True' is only occasionally useful, as in 'everything Fermat believed was true' [Burgess/Rosen]
4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
Modal logic gives an account of metalogical possibility, not metaphysical possibility [Burgess/Rosen]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
We take set theory as given, and retain everything valuable, while avoiding contradictions [Zermelo]
Set theory investigates number, order and function, showing logical foundations for mathematics [Zermelo]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC: Existence, Extension, Specification, Pairing, Unions, Powers, Infinity, Choice [Zermelo, by Clegg]
Zermelo published his axioms in 1908, to secure a controversial proof [Zermelo, by Maddy]
Set theory can be reduced to a few definitions and seven independent axioms [Zermelo]
Zermelo made 'set' and 'member' undefined axioms [Zermelo, by Chihara]
For Zermelo's set theory the empty set is zero and the successor of each number is its unit set [Zermelo, by Blackburn]
Zermelo showed that the ZF axioms in 1930 were non-categorical [Zermelo, by Hallett,M]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Zermelo introduced Pairing in 1930, and it seems fairly obvious [Zermelo, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was added when some advanced theorems seemed to need it [Zermelo, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Zermelo used Foundation to block paradox, but then decided that only Separation was needed [Zermelo, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / m. Axiom of Separation
The Axiom of Separation requires set generation up to one step back from contradiction [Zermelo, by Maddy]
Not every predicate has an extension, but Separation picks the members that satisfy a predicate [Zermelo, by Hart,WD]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
The paradoxes are only a problem for Frege; Cantor didn't assume every condition determines a set [Burgess/Rosen]
4. Formal Logic / G. Formal Mereology / 1. Mereology
Mereology implies that acceptance of entities entails acceptance of conglomerates [Burgess/Rosen]
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
A relation is either a set of sets of sets, or a set of sets [Burgess/Rosen]
5. Theory of Logic / L. Paradox / 3. Antinomies
The antinomy of endless advance and of completion is resolved in well-ordered transfinite numbers [Zermelo]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
The paradoxes no longer seem crucial in critiques of set theory [Burgess/Rosen]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
We should talk about possible existence, rather than actual existence, of numbers [Burgess/Rosen]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
In ZF, the Burali-Forti Paradox proves that there is no set of all ordinals [Zermelo, by Hart,WD]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / e. Countable infinity
Zermelo realised that Choice would facilitate the sort of 'counting' Cantor needed [Zermelo, by Lavine]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
For Zermelo the successor of n is {n} (rather than n U {n}) [Zermelo, by Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Zermelo believed, and Von Neumann seemed to confirm, that numbers are sets [Zermelo, by Maddy]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Structuralism and nominalism are normally rivals, but might work together [Burgess/Rosen]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Different versions of set theory result in different underlying structures for numbers [Zermelo, by Brown,JR]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Number words became nouns around the time of Plato [Burgess/Rosen]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
Abstract/concrete is a distinction of kind, not degree [Burgess/Rosen]
Much of what science says about concrete entities is 'abstraction-laden' [Burgess/Rosen]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / b. Levels of abstraction
Mathematics has ascended to higher and higher levels of abstraction [Burgess/Rosen]
Abstraction is on a scale, of sets, to attributes, to type-formulas, to token-formulas [Burgess/Rosen]
10. Modality / A. Necessity / 8. Transcendental Necessity
Even the gods cannot strive against necessity [Pittacus, by Diog. Laertius]
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
We should judge principles by the science, not science by some fixed principles [Zermelo]
18. Thought / E. Abstraction / 2. Abstracta by Selection
The old debate classified representations as abstract, not entities [Burgess/Rosen]
27. Natural Reality / C. Space / 2. Space
If space is really just a force-field, then it is a physical entity [Burgess/Rosen]