Combining Philosophers

All the ideas for Rescher,N/Oppenheim,P, Halbach,V/Leigh,G.E and Peter Koellner

expand these ideas     |    start again     |     specify just one area for these philosophers


17 ideas

3. Truth / A. Truth Problems / 2. Defining Truth
If we define truth, we can eliminate it [Halbach/Leigh]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
If a language cannot name all objects, then satisfaction must be used, instead of unary truth [Halbach/Leigh]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
Semantic theories need a powerful metalanguage, typically including set theory [Halbach/Leigh]
3. Truth / F. Semantic Truth / 2. Semantic Truth
The T-sentences are deductively weak, and also not deductively conservative [Halbach/Leigh]
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
A natural theory of truth plays the role of reflection principles, establishing arithmetic's soundness [Halbach/Leigh]
If deflationary truth is not explanatory, truth axioms should be 'conservative', proving nothing new [Halbach/Leigh]
3. Truth / G. Axiomatic Truth / 2. FS Truth Axioms
The FS axioms use classical logical, but are not fully consistent [Halbach/Leigh]
3. Truth / G. Axiomatic Truth / 3. KF Truth Axioms
KF is formulated in classical logic, but describes non-classical truth, which allows truth-value gluts [Halbach/Leigh]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
8. Modes of Existence / B. Properties / 12. Denial of Properties
We can reduce properties to true formulas [Halbach/Leigh]
8. Modes of Existence / E. Nominalism / 1. Nominalism / c. Nominalism about abstracta
Nominalists can reduce theories of properties or sets to harmless axiomatic truth theories [Halbach/Leigh]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
A whole must have one characteristic, an internal relation, and a structure [Rescher/Oppenheim]