Combining Philosophers

All the ideas for Ryan Wasserman, David Bostock and Alfred Tarski

expand these ideas     |    start again     |     specify just one area for these philosophers


205 ideas

1. Philosophy / E. Nature of Metaphysics / 5. Metaphysics beyond Science
Some say metaphysics is a highly generalised empirical study of objects [Tarski]
1. Philosophy / F. Analytic Philosophy / 1. Nature of Analysis
Disputes that fail to use precise scientific terminology are all meaningless [Tarski]
2. Reason / D. Definition / 1. Definitions
For a definition we need the words or concepts used, the rules, and the structure of the language [Tarski]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions are wrong, because they change the set that is being defined? [Bostock]
3. Truth / A. Truth Problems / 2. Defining Truth
In everyday language, truth seems indefinable, inconsistent, and illogical [Tarski]
Tarski proved that truth cannot be defined from within a given theory [Tarski, by Halbach]
Tarski proved that any reasonably expressive language suffers from the liar paradox [Tarski, by Horsten]
'True sentence' has no use consistent with logic and ordinary language, so definition seems hopeless [Tarski]
Definitions of truth should not introduce a new version of the concept, but capture the old one [Tarski]
A definition of truth should be materially adequate and formally correct [Tarski]
A rigorous definition of truth is only possible in an exactly specified language [Tarski]
We may eventually need to split the word 'true' into several less ambiguous terms [Tarski]
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
Tarski's Theorem renders any precise version of correspondence impossible [Tarski, by Halbach]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Scheme (T) is not a definition of truth [Tarski]
Tarski gave up on the essence of truth, and asked how truth is used, or how it functions [Tarski, by Horsten]
Tarski did not just aim at a definition; he also offered an adequacy criterion for any truth definition [Tarski, by Halbach]
Tarski enumerates cases of truth, so it can't be applied to new words or languages [Davidson on Tarski]
Tarski define truths by giving the extension of the predicate, rather than the meaning [Davidson on Tarski]
Tarski made truth relative, by only defining truth within some given artificial language [Tarski, by O'Grady]
Tarski has to avoid stating how truths relate to states of affairs [Kirkham on Tarski]
Tarskian semantics says that a sentence is true iff it is satisfied by every sequence [Tarski, by Hossack]
'"It is snowing" is true if and only if it is snowing' is a partial definition of the concept of truth [Tarski]
It is convenient to attach 'true' to sentences, and hence the language must be specified [Tarski]
In the classical concept of truth, 'snow is white' is true if snow is white [Tarski]
Use 'true' so that all T-sentences can be asserted, and the definition will then be 'adequate' [Tarski]
Each interpreted T-sentence is a partial definition of truth; the whole definition is their conjunction [Tarski]
We don't give conditions for asserting 'snow is white'; just that assertion implies 'snow is white' is true [Tarski]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Truth only applies to closed formulas, but we need satisfaction of open formulas to define it [Burgess on Tarski]
Tarski uses sentential functions; truly assigning the objects to variables is what satisfies them [Tarski, by Rumfitt]
We can define the truth predicate using 'true of' (satisfaction) for variables and some objects [Tarski, by Horsten]
For physicalism, reduce truth to satisfaction, then define satisfaction as physical-plus-logic [Tarski, by Kirkham]
Insight: don't use truth, use a property which can be compositional in complex quantified sentence [Tarski, by Kirkham]
Tarski gave axioms for satisfaction, then derived its explicit definition, which led to defining truth [Tarski, by Davidson]
The best truth definition involves other semantic notions, like satisfaction (relating terms and objects) [Tarski]
Specify satisfaction for simple sentences, then compounds; true sentences are satisfied by all objects [Tarski]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
We can't use a semantically closed language, or ditch our logic, so a meta-language is needed [Tarski]
The metalanguage must contain the object language, logic, and defined semantics [Tarski]
3. Truth / F. Semantic Truth / 2. Semantic Truth
Tarski defined truth for particular languages, but didn't define it across languages [Davidson on Tarski]
Tarski didn't capture the notion of an adequate truth definition, as Convention T won't prove non-contradiction [Halbach on Tarski]
Tarski says that his semantic theory of truth is completely neutral about all metaphysics [Tarski, by Haack]
Physicalists should explain reference nonsemantically, rather than getting rid of it [Tarski, by Field,H]
A physicalist account must add primitive reference to Tarski's theory [Field,H on Tarski]
If listing equivalences is a reduction of truth, witchcraft is just a list of witch-victim pairs [Field,H on Tarski]
Tarski made truth respectable, by proving that it could be defined [Tarski, by Halbach]
Tarski had a theory of truth, and a theory of theories of truth [Tarski, by Read]
Tarski's 'truth' is a precise relation between the language and its semantics [Tarski, by Walicki]
Tarskian truth neglects the atomic sentences [Mulligan/Simons/Smith on Tarski]
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Tarski defined truth, but an axiomatisation can be extracted from his inductive clauses [Tarski, by Halbach]
Tarski's had the first axiomatic theory of truth that was minimally adequate [Tarski, by Horsten]
Tarski thought axiomatic truth was too contingent, and in danger of inconsistencies [Tarski, by Davidson]
We need an undefined term 'true' in the meta-language, specified by axioms [Tarski]
3. Truth / H. Deflationary Truth / 1. Redundant Truth
Truth can't be eliminated from universal claims, or from particular unspecified claims [Tarski]
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Semantics is a very modest discipline which solves no real problems [Tarski]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Venn Diagrams map three predicates into eight compartments, then look for the conclusion [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
'Disjunctive Normal Form' is ensuring that no conjunction has a disjunction within its scope [Bostock]
'Conjunctive Normal Form' is ensuring that no disjunction has a conjunction within its scope [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Cutting' allows that if x is proved, and adding y then proves z, you can go straight to z [Bostock]
'Negation' says that Γ,¬φ|= iff Γ|=φ [Bostock]
'Assumptions' says that a formula entails itself (φ|=φ) [Bostock]
'Thinning' allows that if premisses entail a conclusion, then adding further premisses makes no difference [Bostock]
The 'conditional' is that Γ|=φ→ψ iff Γ,φ|=ψ [Bostock]
'Conjunction' says that Γ|=φ∧ψ iff Γ|=φ and Γ|=ψ [Bostock]
'Disjunction' says that Γ,φ∨ψ|= iff Γ,φ|= and Γ,ψ|= [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
A logic with ¬ and → needs three axiom-schemas and one rule as foundation [Bostock]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth tables give prior conditions for logic, but are outside the system, and not definitions [Tarski]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Classical interdefinitions of logical constants and quantifiers is impossible in intuitionism [Bostock]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
A 'free' logic can have empty names, and a 'universally free' logic can have empty domains [Bostock]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
There is no single agreed structure for set theory [Bostock]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A 'proper class' cannot be a member of anything [Bostock]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We could add axioms to make sets either as small or as large as possible [Bostock]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice relies on reference to sets that we are unable to describe [Bostock]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Replacement enforces a 'limitation of size' test for the existence of sets [Bostock]
5. Theory of Logic / A. Overview of Logic / 3. Value of Logic
Set theory and logic are fairy tales, but still worth studying [Tarski]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
There is no clear boundary between the logical and the non-logical [Tarski]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is not decidable: there is no test of whether any formula is valid [Bostock]
The completeness of first-order logic implies its compactness [Bostock]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
A language: primitive terms, then definition rules, then sentences, then axioms, and finally inference rules [Tarski]
Truth is the basic notion in classical logic [Bostock]
Elementary logic cannot distinguish clearly between the finite and the infinite [Bostock]
Fictional characters wreck elementary logic, as they have contradictions and no excluded middle [Bostock]
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Split out the logical vocabulary, make an assignment to the rest. It's logical if premises and conclusion match [Tarski, by Rumfitt]
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
The syntactic turnstile |- φ means 'there is a proof of φ' or 'φ is a theorem' [Bostock]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Logical consequence is when in any model in which the premises are true, the conclusion is true [Tarski, by Beall/Restall]
Logical consequence: true premises give true conclusions under all interpretations [Tarski, by Hodges,W]
Γ|=φ is 'entails'; Γ|= is 'is inconsistent'; |=φ is 'valid' [Bostock]
X follows from sentences K iff every model of K also models X [Tarski]
Validity is a conclusion following for premises, even if there is no proof [Bostock]
It seems more natural to express |= as 'therefore', rather than 'entails' [Bostock]
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
MPP is a converse of Deduction: If Γ |- φ→ψ then Γ,φ|-ψ [Bostock]
MPP: 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ' (omit Γs for Detachment) [Bostock]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The truth definition proves semantic contradiction and excluded middle laws (not the logic laws) [Tarski]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is invariant under arbitrary permutations, so it seems to be a logical term [Tarski, by McGee]
If we are to express that there at least two things, we need identity [Bostock]
|= α=α and α=β |= φ(α/ξ ↔ φ(β/ξ) fix identity [Bostock]
The sign '=' is a two-place predicate expressing that 'a is the same thing as b' (a=b) [Bostock]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Truth-functors are usually held to be defined by their truth-tables [Bostock]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'zero-place' function just has a single value, so it is a name [Bostock]
A 'total' function ranges over the whole domain, a 'partial' function over appropriate inputs [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
In logic, a name is just any expression which refers to a particular single object [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / c. Names as referential
A name denotes an object if the object satisfies a particular sentential function [Tarski]
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
An expression is only a name if it succeeds in referring to a real object [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite descriptions don't always pick out one thing, as in denials of existence, or errors [Bostock]
We are only obliged to treat definite descriptions as non-names if only the former have scope [Bostock]
Definite desciptions resemble names, but can't actually be names, if they don't always refer [Bostock]
Because of scope problems, definite descriptions are best treated as quantifiers [Bostock]
Definite descriptions are usually treated like names, and are just like them if they uniquely refer [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Names do not have scope problems (e.g. in placing negation), but Russell's account does have that problem [Bostock]
5. Theory of Logic / G. Quantification / 1. Quantification
'Prenex normal form' is all quantifiers at the beginning, out of the scope of truth-functors [Bostock]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
If we allow empty domains, we must allow empty names [Bostock]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Substitutional quantification is just standard if all objects in the domain have a name [Bostock]
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
An 'informal proof' is in no particular system, and uses obvious steps and some ordinary English [Bostock]
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Quantification adds two axiom-schemas and a new rule [Bostock]
Axiom systems from Frege, Russell, Church, Lukasiewicz, Tarski, Nicod, Kleene, Quine... [Bostock]
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
'Conditonalised' inferences point to the Deduction Theorem: If Γ,φ|-ψ then Γ|-φ→ψ [Bostock]
The Deduction Theorem greatly simplifies the search for proof [Bostock]
Proof by Assumptions can always be reduced to Proof by Axioms, using the Deduction Theorem [Bostock]
The Deduction Theorem and Reductio can 'discharge' assumptions - they aren't needed for the new truth [Bostock]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Natural deduction takes proof from assumptions (with its rules) as basic, and axioms play no part [Bostock]
Excluded middle is an introduction rule for negation, and ex falso quodlibet will eliminate it [Bostock]
In natural deduction we work from the premisses and the conclusion, hoping to meet in the middle [Bostock]
Natural deduction rules for → are the Deduction Theorem (→I) and Modus Ponens (→E) [Bostock]
The Deduction Theorem is what licenses a system of natural deduction [Bostock]
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
A tree proof becomes too broad if its only rule is Modus Ponens [Bostock]
Tableau proofs use reduction - seeking an impossible consequence from an assumption [Bostock]
Non-branching rules add lines, and branching rules need a split; a branch with a contradiction is 'closed' [Bostock]
A completed open branch gives an interpretation which verifies those formulae [Bostock]
In a tableau proof no sequence is established until the final branch is closed; hypotheses are explored [Bostock]
Tableau rules are all elimination rules, gradually shortening formulae [Bostock]
Unlike natural deduction, semantic tableaux have recipes for proving things [Bostock]
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
Each line of a sequent calculus is a conclusion of previous lines, each one explicitly recorded [Bostock]
A sequent calculus is good for comparing proof systems [Bostock]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Tarski built a compositional semantics for predicate logic, from dependent satisfactions [Tarski, by McGee]
Tarksi invented the first semantics for predicate logic, using this conception of truth [Tarski, by Kirkham]
Semantics is the concepts of connections of language to reality, such as denotation, definition and truth [Tarski]
A language containing its own semantics is inconsistent - but we can use a second language [Tarski]
Interpretation by assigning objects to names, or assigning them to variables first [Bostock, by PG]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A sentence is satisfied when we can assert the sentence when the variables are assigned [Tarski]
Satisfaction is the easiest semantical concept to define, and the others will reduce to it [Tarski]
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionality is built into ordinary logic semantics; names have objects, predicates have sets of objects [Bostock]
If an object has two names, truth is undisturbed if the names are swapped; this is Extensionality [Bostock]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' is a sequence of objects which satisfies a complete set of sentential functions [Tarski]
The object language/ metalanguage distinction is the basis of model theory [Tarski, by Halbach]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Using the definition of truth, we can prove theories consistent within sound logics [Tarski]
A set of formulae is 'inconsistent' when there is no interpretation which can make them all true [Bostock]
A proof-system is 'absolutely consistent' iff we don't have |-(S)φ for every formula [Bostock]
For 'negation-consistent', there is never |-(S)φ and |-(S)¬φ [Bostock]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Inconsistency or entailment just from functors and quantifiers is finitely based, if compact [Bostock]
Compactness means an infinity of sequents on the left will add nothing new [Bostock]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox considers the meaning of 'The least number not named by this name' [Bostock]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
Tarski avoids the Liar Paradox, because truth cannot be asserted within the object language [Tarski, by Fisher]
The Liar makes us assert a false sentence, so it must be taken seriously [Tarski]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
ω + 1 is a new ordinal, but its cardinality is unchanged [Bostock]
Each addition changes the ordinality but not the cardinality, prior to aleph-1 [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
A cardinal is the earliest ordinal that has that number of predecessors [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Aleph-1 is the first ordinal that exceeds aleph-0 [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Instead of by cuts or series convergence, real numbers could be defined by axioms [Bostock]
The number of reals is the number of subsets of the natural numbers [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
For Eudoxus cuts in rationals are unique, but not every cut makes a real number [Bostock]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals are not actually contradictory, because they can be non-standard real numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Tarski improved Hilbert's geometry axioms, and without set-theory [Tarski, by Feferman/Feferman]
Modern axioms of geometry do not need the real numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
The Peano Axioms describe a unique structure [Bostock]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Ordinary or mathematical induction assumes for the first, then always for the next, and hence for all [Bostock]
Complete induction assumes for all numbers less than n, then also for n, and hence for all numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
There are many criteria for the identity of numbers [Bostock]
Hume's Principle is a definition with existential claims, and won't explain numbers [Bostock]
Many things will satisfy Hume's Principle, so there are many interpretations of it [Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege makes numbers sets to solve the Caesar problem, but maybe Caesar is a set! [Bostock]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Numbers can't be positions, if nothing decides what position a given number has [Bostock]
Structuralism falsely assumes relations to other numbers are numbers' only properties [Bostock]
6. Mathematics / C. Sources of Mathematics / 3. Mathematical Nominalism
Nominalism about mathematics is either reductionist, or fictionalist [Bostock]
Nominalism as based on application of numbers is no good, because there are too many applications [Bostock]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Actual measurement could never require the precision of the real numbers [Bostock]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Ordinals are mainly used adjectively, as in 'the first', 'the second'... [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Simple type theory has 'levels', but ramified type theory has 'orders' [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Neo-logicists agree that HP introduces number, but also claim that it suffices for the job [Bostock]
Neo-logicists meet the Caesar problem by saying Hume's Principle is unique to number [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Treating numbers as objects doesn't seem like logic, since arithmetic fixes their totality [Bostock]
Many crucial logicist definitions are in fact impredicative [Bostock]
If Hume's Principle is the whole story, that implies structuralism [Bostock]
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Tarski's theory of truth shifted the approach away from syntax, to set theory and semantics [Feferman/Feferman on Tarski]
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Higher cardinalities in sets are just fairy stories [Bostock]
A fairy tale may give predictions, but only a true theory can give explanations [Bostock]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
The best version of conceptualism is predicativism [Bostock]
Conceptualism fails to grasp mathematical properties, infinity, and objective truth values [Bostock]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
The usual definitions of identity and of natural numbers are impredicative [Bostock]
If abstracta only exist if they are expressible, there can only be denumerably many of them [Bostock]
Predicativism makes theories of huge cardinals impossible [Bostock]
If mathematics rests on science, predicativism may be the best approach [Bostock]
If we can only think of what we can describe, predicativism may be implied [Bostock]
The predicativity restriction makes a difference with the real numbers [Bostock]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is not reflexive, just because it is transitive and symmetrical [Bostock]
Relations can be one-many (at most one on the left) or many-one (at most one on the right) [Bostock]
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
I am a deeply convinced nominalist [Tarski]
9. Objects / C. Structure of Objects / 6. Constitution of an Object
Constitution is identity (being in the same place), or it isn't (having different possibilities) [Wasserman]
Constitution is not identity, because it is an asymmetric dependence relation [Wasserman]
There are three main objections to seeing constitution as different from identity [Wasserman]
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
The weight of a wall is not the weight of its parts, since that would involve double-counting [Wasserman]
9. Objects / F. Identity among Objects / 3. Relative Identity
Relative identity may reject transitivity, but that suggests that it isn't about 'identity' [Wasserman]
9. Objects / F. Identity among Objects / 5. Self-Identity
If non-existent things are self-identical, they are just one thing - so call it the 'null object' [Bostock]
10. Modality / A. Necessity / 6. Logical Necessity
The idea that anything which can be proved is necessary has a problem with empty names [Bostock]
19. Language / C. Assigning Meanings / 3. Predicates
A (modern) predicate is the result of leaving a gap for the name in a sentence [Bostock]
19. Language / E. Analyticity / 1. Analytic Propositions
Sentences are 'analytical' if every sequence of objects models them [Tarski]
19. Language / F. Communication / 2. Assertion
In logic a proposition means the same when it is and when it is not asserted [Bostock]
21. Aesthetics / A. Aesthetic Experience / 3. Taste
Taste is the capacity to judge an object or representation which is thought to be beautiful [Tarski, by Schellekens]