Combining Philosophers

All the ideas for Shaughan Lavine, Joseph Melia and John Haldane

expand these ideas     |    start again     |     specify just one area for these philosophers


51 ideas

2. Reason / A. Nature of Reason / 1. On Reason
Consistency is modal, saying propositions are consistent if they could be true together [Melia]
4. Formal Logic / C. Predicate Calculus PC / 1. Predicate Calculus PC
Predicate logic has connectives, quantifiers, variables, predicates, equality, names and brackets [Melia]
4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
First-order predicate calculus is extensional logic, but quantified modal logic is intensional (hence dubious) [Melia]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order logic needs second-order variables and quantification into predicate position [Melia]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
If every model that makes premises true also makes conclusion true, the argument is valid [Melia]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
7. Existence / D. Theories of Reality / 8. Facts / a. Facts
No sort of plain language or levels of logic can express modal facts properly [Melia]
Maybe names and predicates can capture any fact [Melia]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Identity of Indiscernibles is contentious for qualities, and trivial for non-qualities [Melia]
10. Modality / A. Necessity / 2. Nature of Necessity
We may be sure that P is necessary, but is it necessarily necessary? [Melia]
10. Modality / A. Necessity / 4. De re / De dicto modality
'De re' modality is about things themselves, 'de dicto' modality is about propositions [Melia]
10. Modality / B. Possibility / 1. Possibility
Sometimes we want to specify in what ways a thing is possible [Melia]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
Possible worlds make it possible to define necessity and counterfactuals without new primitives [Melia]
In possible worlds semantics the modal operators are treated as quantifiers [Melia]
If possible worlds semantics is not realist about possible worlds, logic becomes merely formal [Melia]
Possible worlds could be real as mathematics, propositions, properties, or like books [Melia]
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / b. Worlds as fictions
The truth of propositions at possible worlds are implied by the world, just as in books [Melia]
19. Language / A. Nature of Meaning / 5. Meaning as Verification
We accept unverifiable propositions because of simplicity, utility, explanation and plausibility [Melia]
24. Political Theory / D. Ideologies / 6. Liberalism / g. Liberalism critique
Liberalism may fail because it neglects the shared nature of what we pursue and protect [Haldane]