Combining Philosophers

All the ideas for Stilpo, Kenneth Kunen and Rod Girle

expand these ideas     |    start again     |     specify just one area for these philosophers


28 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Propositional logic handles negation, disjunction, conjunction; predicate logic adds quantifiers, predicates, relations [Girle]
There are three axiom schemas for propositional logic [Girle]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
Proposition logic has definitions for its three operators: or, and, and identical [Girle]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Axiom systems of logic contain axioms, inference rules, and definitions of proof and theorems [Girle]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
There are seven modalities in S4, each with its negation [Girle]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
◊p → □◊p is the hallmark of S5 [Girle]
S5 has just six modalities, and all strings can be reduced to those [Girle]
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Possible worlds logics use true-in-a-world rather than true [Girle]
Modal logic has four basic modal negation equivalences [Girle]
Modal logics were studied in terms of axioms, but now possible worlds semantics is added [Girle]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Necessary implication is called 'strict implication'; if successful, it is called 'entailment' [Girle]
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
If an argument is invalid, a truth tree will indicate a counter-example [Girle]
8. Modes of Existence / A. Relations / 4. Formal Relations / b. Equivalence relation
An 'equivalence' relation is one which is reflexive, symmetric and transitive [Kunen]
10. Modality / A. Necessity / 3. Types of Necessity
Analytic truths are divided into logically and conceptually necessary [Girle]
10. Modality / B. Possibility / 1. Possibility
Possibilities can be logical, theoretical, physical, economic or human [Girle]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
A world has 'access' to a world it generates, which is important in possible worlds semantics [Girle]
28. God / C. Attitudes to God / 5. Atheism
Stilpo said if Athena is a daughter of Zeus, then a statue is only the child of a sculptor, and so is not a god [Stilpo, by Diog. Laertius]