Combining Philosophers

All the ideas for Stilpo, Laura Schroeter and John Mayberry

expand these ideas     |    start again     |     specify just one area for these philosophers


51 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
There is a semi-categorical axiomatisation of set-theory [Mayberry]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
Set theory is not just another axiomatised part of mathematics [Mayberry]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
10. Modality / A. Necessity / 3. Types of Necessity
Superficial necessity is true in all worlds; deep necessity is thus true, no matter which world is actual [Schroeter]
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / b. Conceivable but impossible
Contradictory claims about a necessary god both seem apriori coherent [Schroeter]
12. Knowledge Sources / A. A Priori Knowledge / 8. A Priori as Analytic
2D semantics gives us apriori knowledge of our own meanings [Schroeter]
18. Thought / C. Content / 5. Twin Earth
Your view of water depends on whether you start from the actual Earth or its counterfactual Twin [Schroeter]
18. Thought / C. Content / 7. Narrow Content
Rationalists say knowing an expression is identifying its extension using an internal cognitive state [Schroeter]
19. Language / A. Nature of Meaning / 1. Meaning
Internalist meaning is about understanding; externalist meaning is about embedding in a situation [Schroeter]
19. Language / C. Assigning Meanings / 2. Semantics
Semantic theory assigns meanings to expressions, and metasemantics explains how this works [Schroeter]
19. Language / C. Assigning Meanings / 4. Compositionality
Semantic theories show how truth of sentences depends on rules for interpreting and joining their parts [Schroeter]
19. Language / C. Assigning Meanings / 7. Extensional Semantics
Simple semantics assigns extensions to names and to predicates [Schroeter]
'Federer' and 'best tennis player' can't mean the same, despite having the same extension [Schroeter]
19. Language / C. Assigning Meanings / 8. Possible Worlds Semantics
Possible worlds semantics uses 'intensions' - functions which assign extensions at each world [Schroeter]
Possible worlds make 'I' and that person's name synonymous, but they have different meanings [Schroeter]
Possible worlds semantics implies a constitutive connection between meanings and modal claims [Schroeter]
In the possible worlds account all necessary truths are same (because they all map to the True) [Schroeter]
19. Language / C. Assigning Meanings / 10. Two-Dimensional Semantics
Array worlds along the horizontal, and contexts (world,person,time) along the vertical [Schroeter]
If we introduce 'actually' into modal talk, we need possible worlds twice to express this [Schroeter]
Do we know apriori how we refer to names and natural kinds, but their modal profiles only a posteriori? [Schroeter]
2D fans defend it for conceptual analysis, for meaning, and for internalist reference [Schroeter]
2D semantics can't respond to contingent apriori claims, since there is no single proposition involved [Schroeter]
28. God / C. Attitudes to God / 5. Atheism
Stilpo said if Athena is a daughter of Zeus, then a statue is only the child of a sculptor, and so is not a god [Stilpo, by Diog. Laertius]