Combining Philosophers

All the ideas for William S. Jevons, Edwin D. Mares and Kurt Gdel

expand these ideas     |    start again     |     specify just one area for these philosophers


68 ideas

1. Philosophy / E. Nature of Metaphysics / 7. Against Metaphysics
After 1903, Husserl avoids metaphysical commitments [Mares]
2. Reason / A. Nature of Reason / 1. On Reason
For clear questions posed by reason, reason can also find clear answers [Gödel]
2. Reason / A. Nature of Reason / 9. Limits of Reason
Inconsistency doesn't prevent us reasoning about some system [Mares]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative Definitions refer to the totality to which the object itself belongs [Gödel]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Prior to Gödel we thought truth in mathematics consisted in provability [Gödel, by Quine]
4. Formal Logic / C. Predicate Calculus PC / 3. Completeness of PC
Gödel proved the completeness of first order predicate logic in 1930 [Gödel, by Walicki]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Intuitionist logic looks best as natural deduction [Mares]
Intuitionism as natural deduction has no rule for negation [Mares]
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
Three-valued logic is useful for a theory of presupposition [Mares]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We perceive the objects of set theory, just as we perceive with our senses [Gödel]
Gödel show that the incompleteness of set theory was a necessity [Gödel, by Hallett,M]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Gödel proved the classical relative consistency of the axiom V = L [Gödel, by Putnam]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
In simple type theory the axiom of Separation is better than Reducibility [Gödel, by Linsky,B]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Material implication (and classical logic) considers nothing but truth values for implications [Mares]
In classical logic the connectives can be related elegantly, as in De Morgan's laws [Mares]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Gödel proved that first-order logic is complete, and second-order logic incomplete [Gödel, by Dummett]
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Mathematical Logic is a non-numerical branch of mathematics, and the supreme science [Gödel]
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
Excluded middle standardly implies bivalence; attacks use non-contradiction, De M 3, or double negation [Mares]
Standard disjunction and negation force us to accept the principle of bivalence [Mares]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
The connectives are studied either through model theory or through proof theory [Mares]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Reference to a totality need not refer to a conjunction of all its elements [Gödel]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Many-valued logics lack a natural deduction system [Mares]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Situation semantics for logics: not possible worlds, but information in situations [Mares]
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
Originally truth was viewed with total suspicion, and only demonstrability was accepted [Gödel]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The limitations of axiomatisation were revealed by the incompleteness theorems [Gödel, by Koellner]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is semantic, but non-contradiction is syntactic [Mares]
Second Incompleteness: nice theories can't prove their own consistency [Gödel, by Smith,P]
5. Theory of Logic / K. Features of Logics / 3. Soundness
If soundness can't be proved internally, 'reflection principles' can be added to assert soundness [Gödel, by Halbach/Leigh]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Gödel's Theorems did not refute the claim that all good mathematical questions have answers [Gödel, by Koellner]
Gödel's First Theorem sabotages logicism, and the Second sabotages Hilbert's Programme [Smith,P on Gödel]
The undecidable sentence can be decided at a 'higher' level in the system [Gödel]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A logical system needs a syntactical survey of all possible expressions [Gödel]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
Set-theory paradoxes are no worse than sense deception in physics [Gödel]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
There can be no single consistent theory from which all mathematical truths can be derived [Gödel, by George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The generalized Continuum Hypothesis asserts a discontinuity in cardinal numbers [Gödel]
The Continuum Hypothesis is not inconsistent with the axioms of set theory [Gödel, by Clegg]
If set theory is consistent, we cannot refute or prove the Continuum Hypothesis [Gödel, by Hart,WD]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The truth of the axioms doesn't matter for pure mathematics, but it does for applied [Mares]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Gödel eventually hoped for a generalised completeness theorem leaving nothing undecidable [Gödel, by Koellner]
The real reason for Incompleteness in arithmetic is inability to define truth in a language [Gödel]
Gödel showed that arithmetic is either incomplete or inconsistent [Gödel, by Rey]
First Incompleteness: arithmetic must always be incomplete [Gödel, by Smith,P]
Arithmetical truth cannot be fully and formally derived from axioms and inference rules [Gödel, by Nagel/Newman]
Gödel's Second says that semantic consequence outruns provability [Gödel, by Hanna]
First Incompleteness: a decent consistent system is syntactically incomplete [Gödel, by George/Velleman]
Second Incompleteness: a decent consistent system can't prove its own consistency [Gödel, by George/Velleman]
There is a sentence which a theory can show is true iff it is unprovable [Gödel, by Smith,P]
'This system can't prove this statement' makes it unprovable either way [Gödel, by Clegg]
Some arithmetical problems require assumptions which transcend arithmetic [Gödel]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Mathematical objects are as essential as physical objects are for perception [Gödel]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Basic mathematics is related to abstract elements of our empirical ideas [Gödel]
Mathematics is relations between properties we abstract from experience [Mares]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
I hold that algebra and number are developments of logic [Jevons]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
For intuitionists there are not numbers and sets, but processes of counting and collecting [Mares]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Impredicative definitions are admitted into ordinary mathematics [Gödel]
Realists are happy with impredicative definitions, which describe entities in terms of other existing entities [Gödel, by Shapiro]
10. Modality / D. Knowledge of Modality / 2. A Priori Contingent
Light in straight lines is contingent a priori; stipulated as straight, because they happen to be so [Mares]
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
Aristotelians dislike the idea of a priori judgements from pure reason [Mares]
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Empiricists say rationalists mistake imaginative powers for modal insights [Mares]
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
The most popular view is that coherent beliefs explain one another [Mares]
14. Science / B. Scientific Theories / 3. Instrumentalism
Operationalism defines concepts by our ways of measuring them [Mares]
17. Mind and Body / C. Functionalism / 2. Machine Functionalism
Basic logic can be done by syntax, with no semantics [Gödel, by Rey]
18. Thought / D. Concepts / 2. Origin of Concepts / b. Empirical concepts
Aristotelian justification uses concepts abstracted from experience [Mares]
18. Thought / D. Concepts / 4. Structure of Concepts / c. Classical concepts
The essence of a concept is either its definition or its conceptual relations? [Mares]
19. Language / C. Assigning Meanings / 2. Semantics
In 'situation semantics' our main concepts are abstracted from situations [Mares]
19. Language / C. Assigning Meanings / 8. Possible Worlds Semantics
Possible worlds semantics has a nice compositional account of modal statements [Mares]
19. Language / D. Propositions / 3. Concrete Propositions
Unstructured propositions are sets of possible worlds; structured ones have components [Mares]
27. Natural Reality / C. Space / 3. Points in Space
Maybe space has points, but processes always need regions with a size [Mares]