Combining Philosophers

All the ideas for Cardinal/Hayward/Jones, Leon Horsten and Gareth Evans

expand these ideas     |    start again     |     specify just one area for these philosophers

78 ideas

1. Philosophy / D. Nature of Philosophy / 3. Philosophy Defined
Philosophy is the most general intellectual discipline [Horsten]
2. Reason / D. Definition / 2. Aims of Definition
A definition should allow the defined term to be eliminated [Horsten]
2. Reason / D. Definition / 8. Impredicative Definition
Predicative definitions only refer to entities outside the defined collection [Horsten]
3. Truth / A. Truth Problems / 1. Truth
Semantic theories of truth seek models; axiomatic (syntactic) theories seek logical principles [Horsten]
Truth is a property, because the truth predicate has an extension [Horsten]
3. Truth / A. Truth Problems / 2. Defining Truth
Truth has no 'nature', but we should try to describe its behaviour in inferences [Horsten]
3. Truth / A. Truth Problems / 5. Truth Bearers
Propositions have sentence-like structures, so it matters little which bears the truth [Horsten]
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
Modern correspondence is said to be with the facts, not with true propositions [Horsten]
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
The correspondence 'theory' is too vague - about both 'correspondence' and 'facts' [Horsten]
3. Truth / D. Coherence Truth / 2. Coherence Truth Critique
The coherence theory allows multiple coherent wholes, which could contradict one another [Horsten]
3. Truth / E. Pragmatic Truth / 1. Pragmatic Truth
The pragmatic theory of truth is relative; useful for group A can be useless for group B [Horsten]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Tarski's hierarchy lacks uniform truth, and depends on contingent factors [Horsten]
Tarski Bi-conditional: if you'll assert φ you'll assert φ-is-true - and also vice versa [Horsten]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
Semantic theories have a regress problem in describing truth in the languages for the models [Horsten]
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
'Reflexive' truth theories allow iterations (it is T that it is T that p) [Horsten]
Axiomatic approaches to truth avoid the regress problem of semantic theories [Horsten]
A good theory of truth must be compositional (as well as deriving biconditionals) [Horsten]
An axiomatic theory needs to be of maximal strength, while being natural and sound [Horsten]
The Na´ve Theory takes the bi-conditionals as axioms, but it is inconsistent, and allows the Liar [Horsten]
Axiomatic theories take truth as primitive, and propose some laws of truth as axioms [Horsten]
By adding truth to Peano Arithmetic we increase its power, so truth has mathematical content! [Horsten]
Axiomatic approaches avoid limiting definitions to avoid the truth predicate, and limited sizes of models [Horsten]
3. Truth / G. Axiomatic Truth / 2. FS Truth Axioms
Friedman-Sheard theory keeps classical logic and aims for maximum strength [Horsten]
3. Truth / G. Axiomatic Truth / 3. KF Truth Axioms
Kripke-Feferman has truth gaps, instead of classical logic, and aims for maximum strength [Horsten]
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Deflationism skips definitions and models, and offers just accounts of basic laws of truth [Horsten]
Inferential deflationism says truth has no essence because no unrestricted logic governs the concept [Horsten]
Deflationism says truth isn't a topic on its own - it just concerns what is true [Horsten]
Deflation: instead of asserting a sentence, we can treat it as an object with the truth-property [Horsten]
Deflationism concerns the nature and role of truth, but not its laws [Horsten]
This deflationary account says truth has a role in generality, and in inference [Horsten]
4. Formal Logic / E. Nonclassical Logics / 1. Nonclassical Logics
Nonclassical may accept T/F but deny applicability, or it may deny just T or F as well [Horsten]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Doubt is thrown on classical logic by the way it so easily produces the liar paradox [Horsten]
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
Deduction Theorem: ψ only derivable from φ iff φ→ψ are axioms [Horsten]
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A theory is 'non-conservative' if it facilitates new mathematical proofs [Horsten]
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
How can an expression be a name, if names can change their denotation? [Evans]
We must distinguish what the speaker denotes by a name, from what the name denotes [Evans]
A private intention won't give a name a denotation; the practice needs it to be made public [Evans]
5. Theory of Logic / F. Referring in Logic / 1. Naming / c. Names as referential
The Causal Theory of Names is wrong, since the name 'Madagascar' actually changed denotation [Evans]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
It is easier to imagine truth-value gaps (for the Liar, say) than for truth-value gluts (both T and F) [Horsten]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Satisfaction is a primitive notion, and very liable to semantical paradoxes [Horsten]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
A theory is 'categorical' if it has just one model up to isomorphism [Horsten]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
The first incompleteness theorem means that consistency does not entail soundness [Horsten]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
Strengthened Liar: 'this sentence is not true in any context' - in no context can this be evaluated [Horsten]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
English expressions are denumerably infinite, but reals are nondenumerable, so many are unnameable [Horsten]
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
Computer proofs don't provide explanations [Horsten]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
ZFC showed that the concept of set is mathematical, not logical, because of its existence claims [Horsten]
Set theory is substantial over first-order arithmetic, because it enables new proofs [Horsten]
The concept of 'ordinal number' is set-theoretic, not arithmetical [Horsten]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Predicativism says mathematical definitions must not include the thing being defined [Horsten]
7. Existence / D. Theories of Reality / 7. Facts / b. Types of fact
We may believe in atomic facts, but surely not complex disjunctive ones? [Horsten]
7. Existence / D. Theories of Reality / 9. Vagueness / b. Vagueness of reality
Evans argues (falsely!) that a contradiction follows from treating objects as vague [Evans, by Lowe]
Is it coherent that reality is vague, identities can be vague, and objects can have fuzzy boundaries? [Evans]
There clearly are vague identity statements, and Evans's argument has a false conclusion [Evans, by Lewis]
Evans assumes there can be vague identity statements, and that his proof cannot be right [Evans, by Lewis]
7. Existence / D. Theories of Reality / 9. Vagueness / f. Supervaluation for vagueness
If 'Italy is large' lacks truth, so must 'Italy is not large'; but classical logic says it's large or it isn't [Horsten]
In the supervaluationist account, disjunctions are not determined by their disjuncts [Horsten]
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
If a=b is indeterminate, then a=/=b, and so there cannot be indeterminate identity [Evans, by Thomasson]
9. Objects / F. Identity among Objects / 6. Identity between Objects
There can't be vague identity; a and b must differ, since a, unlike b, is only vaguely the same as b [Evans, by PG]
10. Modality / B. Possibility / 5. Contingency
'Superficial' contingency: false in some world; 'Deep' contingency: no obvious verification [Evans, by MaciÓ/Garcia-Carpentiro]
10. Modality / E. Possible worlds / 3. Transworld Objects / b. Rigid designation
Rigid designators can be meaningful even if empty [Evans, by Mackie,P]
11. Knowledge Aims / A. Knowledge / 4. Belief / c. Aim of beliefs
Some claim that indicative conditionals are believed by people, even though they are not actually held true [Horsten]
11. Knowledge Aims / C. Knowing Reality / 2. Phenomenalism
The phenomenalist says that to be is to be perceivable [Cardinal/Hayward/Jones]
Linguistic phenomenalism says we can eliminate talk of physical objects [Cardinal/Hayward/Jones]
If we lack enough sense-data, are we to say that parts of reality are 'indeterminate'? [Cardinal/Hayward/Jones]
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / c. Primary qualities
An object cannot remain an object without its primary qualities [Cardinal/Hayward/Jones]
Primary qualities can be described mathematically, unlike secondary qualities [Cardinal/Hayward/Jones]
12. Knowledge Sources / B. Perception / 4. Sense Data / d. Sense-data problems
The Homunculus Fallacy explains a subject perceiving objects by repeating the problem internally [Evans]
12. Knowledge Sources / B. Perception / 6. Inference in Perception
We have far fewer colour concepts than we have discriminations of colour [Evans]
Experiences have no conceptual content [Evans, by Greco]
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / c. Coherentism critique
My justifications might be very coherent, but totally unconnected to the world [Cardinal/Hayward/Jones]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
The Generality Constraint says if you can think a predicate you can apply it to anything [Evans]
18. Thought / D. Concepts / 3. Ontology of Concepts / b. Concepts as abilities
Concepts have a 'Generality Constraint', that we must know how predicates apply to them [Evans, by Peacocke]
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
Speakers intend to refer to items that are the source of their information [Evans]
The intended referent of a name needs to be the cause of the speaker's information about it [Evans]
19. Language / B. Reference / 4. Descriptive Reference / b. Reference by description
If descriptions are sufficient for reference, then I must accept a false reference if the descriptions fit [Evans]
19. Language / C. Assigning Meanings / 1. Syntax
A theory of syntax can be based on Peano arithmetic, thanks to the translation by G÷del coding [Horsten]
19. Language / F. Communication / 5. Pragmatics / b. Implicature
We use expressions 'deferentially', to conform to the use of other people [Evans]
19. Language / F. Communication / 6. Interpreting Language / c. Principle of charity
Charity should minimize inexplicable error, rather than maximising true beliefs [Evans]