36 ideas
9542 | The best known axiomatization of PL is Whitehead/Russell, with four axioms and two rules [Russell/Whitehead, by Hughes/Cresswell] |
21720 | Russell saw Reducibility as legitimate for reducing classes to logic [Linsky,B on Russell/Whitehead] |
10044 | Russell denies extensional sets, because the null can't be a collection, and the singleton is just its element [Russell/Whitehead, by Shapiro] |
18208 | We regard classes as mere symbolic or linguistic conveniences [Russell/Whitehead] |
8204 | Lewis's 'strict implication' preserved Russell's confusion of 'if...then' with implication [Quine on Russell/Whitehead] |
9359 | Russell's implication means that random sentences imply one another [Lewis,CI on Russell/Whitehead] |
21707 | Russell unusually saw logic as 'interpreted' (though very general, and neutral) [Russell/Whitehead, by Linsky,B] |
10036 | In 'Principia' a new abstract theory of relations appeared, and was applied [Russell/Whitehead, by Gödel] |
18248 | A real number is the class of rationals less than the number [Russell/Whitehead, by Shapiro] |
18152 | Russell takes numbers to be classes, but then reduces the classes to numerical quantifiers [Russell/Whitehead, by Bostock] |
10025 | Russell and Whitehead took arithmetic to be higher-order logic [Russell/Whitehead, by Hodes] |
8683 | Russell and Whitehead were not realists, but embraced nearly all of maths in logic [Russell/Whitehead, by Friend] |
10037 | 'Principia' lacks a precise statement of the syntax [Gödel on Russell/Whitehead] |
10093 | The ramified theory of types used propositional functions, and covered bound variables [Russell/Whitehead, by George/Velleman] |
8691 | The Russell/Whitehead type theory was limited, and was not really logic [Friend on Russell/Whitehead] |
10305 | In 'Principia Mathematica', logic is exceeded in the axioms of infinity and reducibility, and in the domains [Bernays on Russell/Whitehead] |
8684 | Russell and Whitehead consider the paradoxes to indicate that we create mathematical reality [Russell/Whitehead, by Friend] |
8746 | To avoid vicious circularity Russell produced ramified type theory, but Ramsey simplified it [Russell/Whitehead, by Shapiro] |
16235 | Persistence conditions cannot contradict, so there must be a 'dominant sortal' [Burke,M, by Hawley] |
14753 | The 'dominant' of two coinciding sortals is the one that entails the widest range of properties [Burke,M, by Sider] |
16072 | 'The rock' either refers to an object, or to a collection of parts, or to some stuff [Burke,M, by Wasserman] |
14751 | Tib goes out of existence when the tail is lost, because Tib was never the 'cat' [Burke,M, by Sider] |
13278 | Maybe the clay becomes a different lump when it becomes a statue [Burke,M, by Koslicki] |
16234 | Burke says when two object coincide, one of them is destroyed in the process [Burke,M, by Hawley] |
16071 | Sculpting a lump of clay destroys one object, and replaces it with another one [Burke,M, by Wasserman] |
14750 | Two entities can coincide as one, but only one of them (the dominant sortal) fixes persistence conditions [Burke,M, by Sider] |
12033 | An object is identical with itself, and no different indiscernible object can share that [Russell/Whitehead, by Adams,RM] |
10040 | Russell showed, through the paradoxes, that our basic logical intuitions are self-contradictory [Russell/Whitehead, by Gödel] |
21515 | Incoherence may be more important for enquiry than coherence [Olsson] |
21514 | Coherence is the capacity to answer objections [Olsson] |
21496 | Mere agreement of testimonies is not enough to make truth very likely [Olsson] |
21499 | Coherence is only needed if the informations sources are not fully reliable [Olsson] |
21502 | A purely coherent theory cannot be true of the world without some contact with the world [Olsson] |
21512 | Extending a system makes it less probable, so extending coherence can't make it more probable [Olsson] |
21725 | The multiple relations theory says assertions about propositions are about their ingredients [Russell/Whitehead, by Linsky,B] |
18275 | Only the act of judging completes the meaning of a statement [Russell/Whitehead] |