Combining Philosophers

All the ideas for Michael Burke, Melvin Fitting and Bernard Bolzano

expand these ideas     |    start again     |     specify just one area for these philosophers


25 ideas

2. Reason / B. Laws of Thought / 1. Laws of Thought
The laws of thought are true, but they are not the axioms of logic [Bolzano, by George/Van Evra]
4. Formal Logic / E. Nonclassical Logics / 8. Intensional Logic
If terms change their designations in different states, they are functions from states to objects [Fitting]
Intensional logic adds a second type of quantification, over intensional objects, or individual concepts [Fitting]
4. Formal Logic / E. Nonclassical Logics / 9. Awareness Logic
Awareness logic adds the restriction of an awareness function to epistemic logic [Fitting]
4. Formal Logic / E. Nonclassical Logics / 10. Justification Logics
Justication logics make explicit the reasons for mathematical truth in proofs [Fitting]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
An aggregate in which order does not matter I call a 'set' [Bolzano]
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Classical logic is deliberately extensional, in order to model mathematics [Fitting]
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
λ-abstraction disambiguates the scope of modal operators [Fitting]
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Bolzano wanted to reduce all of geometry to arithmetic [Bolzano, by Brown,JR]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
A truly infinite quantity does not need to be a variable [Bolzano]
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Bolzano began the elimination of intuition, by proving something which seemed obvious [Bolzano, by Dummett]
7. Existence / C. Structure of Existence / 1. Grounding / c. Grounding and explanation
Philosophical proofs in mathematics establish truths, and also show their grounds [Bolzano, by Correia/Schnieder]
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Persistence conditions cannot contradict, so there must be a 'dominant sortal' [Burke,M, by Hawley]
The 'dominant' of two coinciding sortals is the one that entails the widest range of properties [Burke,M, by Sider]
9. Objects / B. Unity of Objects / 1. Unifying an Object / b. Unifying aggregates
'The rock' either refers to an object, or to a collection of parts, or to some stuff [Burke,M, by Wasserman]
9. Objects / B. Unity of Objects / 3. Unity Problems / b. Cat and its tail
Tib goes out of existence when the tail is lost, because Tib was never the 'cat' [Burke,M, by Sider]
9. Objects / B. Unity of Objects / 3. Unity Problems / c. Statue and clay
Maybe the clay becomes a different lump when it becomes a statue [Burke,M, by Koslicki]
Sculpting a lump of clay destroys one object, and replaces it with another one [Burke,M, by Wasserman]
Burke says when two object coincide, one of them is destroyed in the process [Burke,M, by Hawley]
9. Objects / B. Unity of Objects / 3. Unity Problems / d. Coincident objects
Two entities can coincide as one, but only one of them (the dominant sortal) fixes persistence conditions [Burke,M, by Sider]
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Definite descriptions pick out different objects in different possible worlds [Fitting]
12. Knowledge Sources / E. Direct Knowledge / 2. Intuition
Bolzano wanted to avoid Kantian intuitions, and prove everything that could be proved [Bolzano, by Dummett]
19. Language / D. Propositions / 2. Abstract Propositions / a. Propositions as sense
Propositions are abstract structures of concepts, ready for judgement or assertion [Bolzano, by Correia/Schnieder]
A 'proposition' is the sense of a linguistic expression, and can be true or false [Bolzano]
19. Language / E. Analyticity / 2. Analytic Truths
The ground of a pure conceptual truth is only in other conceptual truths [Bolzano]