Combining Philosophers

All the ideas for Michael Burke, Helen Cartwright and Euclid

expand these ideas     |    start again     |     specify just one area for these philosophers


20 ideas

2. Reason / E. Argument / 6. Conclusive Proof
Proof reveals the interdependence of truths, as well as showing their certainty [Euclid, by Frege]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
If you pick an arbitrary triangle, things proved of it are true of all triangles [Euclid, by Lemmon]
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
A 'singulariser' converts a plural like 'number of' to a syntactically neutral form [Cartwright,H, by Hossack]
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Euclid's geometry is synthetic, but Descartes produced an analytic version of it [Euclid, by Resnik]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
An assumption that there is a largest prime leads to a contradiction [Euclid, by Brown,JR]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
A unit is that according to which each existing thing is said to be one [Euclid]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Postulate 2 says a line can be extended continuously [Euclid, by Shapiro]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid needs a principle of continuity, saying some lines must intersect [Shapiro on Euclid]
Euclid says we can 'join' two points, but Hilbert says the straight line 'exists' [Euclid, by Bernays]
Modern geometries only accept various parts of the Euclid propositions [Russell on Euclid]
Euclid's parallel postulate defines unique non-intersecting parallel lines [Euclid, by Friend]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Euclid's common notions or axioms are what we must have if we are to learn anything at all [Euclid, by Roochnik]
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Persistence conditions cannot contradict, so there must be a 'dominant sortal' [Burke,M, by Hawley]
The 'dominant' of two coinciding sortals is the one that entails the widest range of properties [Burke,M, by Sider]
9. Objects / B. Unity of Objects / 1. Unifying an Object / b. Unifying aggregates
'The rock' either refers to an object, or to a collection of parts, or to some stuff [Burke,M, by Wasserman]
9. Objects / B. Unity of Objects / 3. Unity Problems / b. Cat and its tail
Tib goes out of existence when the tail is lost, because Tib was never the 'cat' [Burke,M, by Sider]
9. Objects / B. Unity of Objects / 3. Unity Problems / c. Statue and clay
Maybe the clay becomes a different lump when it becomes a statue [Burke,M, by Koslicki]
Sculpting a lump of clay destroys one object, and replaces it with another one [Burke,M, by Wasserman]
Burke says when two object coincide, one of them is destroyed in the process [Burke,M, by Hawley]
9. Objects / B. Unity of Objects / 3. Unity Problems / d. Coincident objects
Two entities can coincide as one, but only one of them (the dominant sortal) fixes persistence conditions [Burke,M, by Sider]