Combining Philosophers

All the ideas for Michael Burke, Nicholas Rescher and Leslie H. Tharp

expand these ideas     |    start again     |     specify just one area for these philosophers


26 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice now seems acceptable and obvious (if it is meaningful) [Tharp]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is either for demonstration, or for characterizing structures [Tharp]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Elementary logic is complete, but cannot capture mathematics [Tharp]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic isn't provable, but will express set-theory and classic problems [Tharp]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
In sentential logic there is a simple proof that all truth functions can be reduced to 'not' and 'and' [Tharp]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
The main quantifiers extend 'and' and 'or' to infinite domains [Tharp]
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
There are at least five unorthodox quantifiers that could be used [Tharp]
5. Theory of Logic / J. Model Theory in Logic / 3. L÷wenheim-Skolem Theorems
The L÷wenheim-Skolem property is a limitation (e.g. can't say there are uncountably many reals) [Tharp]
Skolem mistakenly inferred that Cantor's conceptions were illusory [Tharp]
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness would seem to be an essential requirement of a proof procedure [Tharp]
5. Theory of Logic / K. Features of Logics / 4. Completeness
Completeness and compactness together give axiomatizability [Tharp]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
If completeness fails there is no algorithm to list the valid formulas [Tharp]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Compactness is important for major theories which have infinitely many axioms [Tharp]
Compactness blocks infinite expansion, and admits non-standard models [Tharp]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A complete logic has an effective enumeration of the valid formulas [Tharp]
Effective enumeration might be proved but not specified, so it won't guarantee knowledge [Tharp]
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Persistence conditions cannot contradict, so there must be a 'dominant sortal' [Burke,M, by Hawley]
The 'dominant' of two coinciding sortals is the one that entails the widest range of properties [Burke,M, by Sider]
9. Objects / B. Unity of Objects / 1. Unifying an Object / b. Unifying aggregates
'The rock' either refers to an object, or to a collection of parts, or to some stuff [Burke,M, by Wasserman]
9. Objects / B. Unity of Objects / 3. Unity Problems / b. Cat and its tail
Tib goes out of existence when the tail is lost, because Tib was never the 'cat' [Burke,M, by Sider]
9. Objects / B. Unity of Objects / 3. Unity Problems / c. Statue and clay
Sculpting a lump of clay destroys one object, and replaces it with another one [Burke,M, by Wasserman]
Burke says when two object coincide, one of them is destroyed in the process [Burke,M, by Hawley]
Maybe the clay becomes a different lump when it becomes a statue [Burke,M, by Koslicki]
9. Objects / B. Unity of Objects / 3. Unity Problems / d. Coincident objects
Two entities can coincide as one, but only one of them (the dominant sortal) fixes persistence conditions [Burke,M, by Sider]
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
In the military, persons are parts of parts of large units, but not parts of those large units [Rescher]
27. Natural Reality / A. Classical Physics / 1. Mechanics / a. Explaining movement
We only see points in motion, and thereby infer movement [Rescher]