Combining Philosophers

All the ideas for Walter Burley, Richard M. Hare and Stephen Read

expand these ideas     |    start again     |     specify just one area for these philosophers

72 ideas

4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Three traditional names of rules are 'Simplification', 'Addition' and 'Disjunctive Syllogism' [Read]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / a. Systems of modal logic
Necessity is provability in S4, and true in all worlds in S5 [Read]
4. Formal Logic / E. Nonclassical Logics / 4. Fuzzy Logic
There are fuzzy predicates (and sets), and fuzzy quantifiers and modifiers [Read]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Same say there are positive, negative and neuter free logics [Read]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
Realisms like the full Comprehension Principle, that all good concepts determine sets [Read]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
If logic is topic-neutral that means it delves into all subjects, rather than having a pure subject matter [Read]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Not all validity is captured in first-order logic [Read]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
The non-emptiness of the domain is characteristic of classical logic [Read]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Semantics must precede proof in higher-order logics, since they are incomplete [Read]
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
We should exclude second-order logic, precisely because it captures arithmetic [Read]
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Maybe arguments are only valid when suppressed premises are all stated - but why? [Read]
A theory of logical consequence is a conceptual analysis, and a set of validity techniques [Read]
Not all arguments are valid because of form; validity is just true premises and false conclusion being impossible [Read]
If the logic of 'taller of' rests just on meaning, then logic may be the study of merely formal consequence [Read]
Logical consequence isn't just a matter of form; it depends on connections like round-square [Read]
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
In modus ponens the 'if-then' premise contributes nothing if the conclusion follows anyway [Read]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Logical connectives contain no information, but just record combination relations between facts [Read]
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A theory is logically closed, which means infinite premisses [Read]
5. Theory of Logic / G. Quantification / 1. Quantification
Quantifiers are second-order predicates [Read]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
In second-order logic the higher-order variables range over all the properties of the objects [Read]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth is the conclusion of a valid inference with no premisses [Read]
5. Theory of Logic / J. Model Theory in Logic / 3. L÷wenheim-Skolem Theorems
Any first-order theory of sets is inadequate [Read]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Compactness does not deny that an inference can have infinitely many premisses [Read]
Compactness is when any consequence of infinite propositions is the consequence of a finite subset [Read]
Compactness makes consequence manageable, but restricts expressive power [Read]
Compactness blocks the proof of 'for every n, A(n)' (as the proof would be infinite) [Read]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
Self-reference paradoxes seem to arise only when falsity is involved [Read]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Infinite cuts and successors seems to suggest an actual infinity there waiting for us [Read]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order arithmetic covers all properties, ensuring categoricity [Read]
Although second-order arithmetic is incomplete, it can fully model normal arithmetic [Read]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / g. Von Neumann numbers
Von Neumann numbers are helpful, but don't correctly describe numbers [Read]
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
The goodness of a picture supervenes on the picture; duplicates must be equally good [Hare]
7. Existence / D. Theories of Reality / 9. Vagueness / d. Vagueness as linguistic
Would a language without vagueness be usable at all? [Read]
7. Existence / D. Theories of Reality / 9. Vagueness / f. Supervaluation for vagueness
Supervaluations say there is a cut-off somewhere, but at no particular place [Read]
A 'supervaluation' gives a proposition consistent truth-value for classical assignments [Read]
Identities and the Indiscernibility of Identicals don't work with supervaluations [Read]
9. Objects / A. Existence of Objects / 5. Individuation / d. Individuation by haecceity
A haecceity is a set of individual properties, essential to each thing [Read]
9. Objects / E. Objects over Time / 6. Successive Things
Days exist, and yet they seem to be made up of parts which don't exist [Burley]
Unlike permanent things, successive things cannot exist all at once [Burley]
10. Modality / A. Necessity / 2. Nature of Necessity
Equating necessity with truth in every possible world is the S5 conception of necessity [Read]
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
The point of conditionals is to show that one will accept modus ponens [Read]
The standard view of conditionals is that they are truth-functional [Read]
Some people even claim that conditionals do not express propositions [Read]
10. Modality / B. Possibility / 8. Conditionals / d. Non-truthfunction conditionals
Conditionals are just a shorthand for some proof, leaving out the details [Read]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
Knowledge of possible worlds is not causal, but is an ontology entailed by semantics [Read]
10. Modality / E. Possible worlds / 1. Possible Worlds / c. Possible worlds realism
How can modal Platonists know the truth of a modal proposition? [Read]
10. Modality / E. Possible worlds / 1. Possible Worlds / d. Possible worlds actualism
Actualism is reductionist (to parts of actuality), or moderate realist (accepting real abstractions) [Read]
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / c. Worlds as propositions
A possible world is a determination of the truth-values of all propositions of a domain [Read]
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
If worlds are concrete, objects can't be present in more than one, and can only have counterparts [Read]
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / c. Primary qualities
The primary qualities are mixed to cause secondary qualities [Burley]
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
The mind abstracts ways things might be, which are nonetheless real [Read]
19. Language / C. Assigning Meanings / 4. Compositionality
Negative existentials with compositionality make the whole sentence meaningless [Read]
19. Language / D. Propositions / 1. Propositions
A proposition objectifies what a sentence says, as indicative, with secure references [Read]
22. Metaethics / C. Ethics Foundations / 2. Source of Ethics / c. Ethical intuitionism
How can intuitionists distinguish universal convictions from local cultural ones? [Hare]
You can't use intuitions to decide which intuitions you should cultivate [Hare]
22. Metaethics / C. Ethics Foundations / 2. Source of Ethics / h. Expressivism
Emotivists mistakenly think all disagreements are about facts, and so there are no moral reasons [Hare]
22. Metaethics / C. Ethics Foundations / 2. Source of Ethics / i. Prescriptivism
In primary evaluative words like 'ought' prescription is constant but description can vary [Hare, by Hooker,B]
If morality is just a natural or intuitive description, that leads to relativism [Hare]
Moral statements are imperatives rather than to avowals of emotion - but universalisable [Hare, by Glock]
Universalised prescriptivism could be seen as implying utilitarianism [Hare, by Foot]
Hare says I acquire an agglomeration of preferences by role-reversal, leading to utilitarianism [Hare, by Williams,B]
If we have to want the preferences of the many, we have to abandon our own deeply-held views [Williams,B on Hare]
If morality is to be built on identification with the preferences of others, I must agree with their errors [Williams,B on Hare]
Prescriptivism sees 'ought' statements as imperatives which are universalisable [Hare]
Prescriptivism implies a commitment, but descriptivism doesn't [Hare]
A judgement is presciptive if we expect it to be acted on [Hare]
Descriptivism say ethical meaning is just truth-conditions; prescriptivism adds an evaluation [Hare]
If there can be contradictory prescriptions, then reasoning must be involved [Hare]
An 'ought' statement implies universal application [Hare]
23. Ethics / B. Contract Ethics / 8. Contract Strategies
By far the easiest way of seeming upright is to be upright [Hare]
23. Ethics / D. Deontological Ethics / 3. Universalisability
Moral judgements must invoke some sort of principle [Hare]
23. Ethics / D. Deontological Ethics / 4. Categorical Imperative
The categorical imperative leads to utilitarianism [Hare, by Nagel]