Combining Philosophers

All the ideas for Mary Astell, Kathrin Koslicki and Wilfrid Hodges

expand these ideas     |    start again     |     specify just one area for these philosophers


61 ideas

2. Reason / D. Definition / 4. Real Definition
A successful Aristotelian 'definition' is what sciences produces after an investigation [Koslicki]
Real definitions don't just single out a thing; they must also explain its essence [Koslicki]
2. Reason / D. Definition / 6. Definition by Essence
Essences cause necessary features, and definitions describe those necessary features [Koslicki]
2. Reason / D. Definition / 7. Contextual Definition
The idea that groups of concepts could be 'implicitly defined' was abandoned [Hodges,W]
4. Formal Logic / G. Formal Mereology / 1. Mereology
The 'aggregative' objections says mereology gets existence and location of objects wrong [Koslicki]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is the study of sound argument, or of certain artificial languages (or applying the latter to the former) [Hodges,W]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Since first-order languages are complete, |= and |- have the same meaning [Hodges,W]
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Consequence is truth-preserving, either despite substitutions, or in all interpretations [Koslicki]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
|= in model-theory means 'logical consequence' - it holds in all models [Hodges,W]
'Roses are red; therefore, roses are colored' seems truth-preserving, but not valid in a system [Koslicki]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
There are three different standard presentations of semantics [Hodges,W]
A formula needs an 'interpretation' of its constants, and a 'valuation' of its variables [Hodges,W]
I |= φ means that the formula φ is true in the interpretation I [Hodges,W]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
|= should be read as 'is a model for' or 'satisfies' [Hodges,W]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory studies formal or natural language-interpretation using set-theory [Hodges,W]
Models in model theory are structures, not sets of descriptions [Hodges,W]
A 'structure' is an interpretation specifying objects and classes of quantification [Hodges,W]
5. Theory of Logic / J. Model Theory in Logic / 3. L÷wenheim-Skolem Theorems
Up L÷wenheim-Skolem: if infinite models, then arbitrarily large models [Hodges,W]
Down L÷wenheim-Skolem: if a countable language has a consistent theory, that has a countable model [Hodges,W]
5. Theory of Logic / K. Features of Logics / 6. Compactness
If a first-order theory entails a sentence, there is a finite subset of the theory which entails it [Hodges,W]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
Objects do not naturally form countable units [Koslicki]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
There is no deep reason why we count carrots but not asparagus [Koslicki]
We can still count squares, even if they overlap [Koslicki]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / d. Counting via concepts
We struggle to count branches and waves because our concepts lack clear boundaries [Koslicki]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
First-order logic can't discriminate between one infinite cardinal and another [Hodges,W]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
It is more explanatory if you show how a number is constructed from basic entities and relations [Koslicki]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
A 'set' is a mathematically well-behaved class [Hodges,W]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Some questions concern mathematical entities, rather than whole structures [Koslicki]
7. Existence / C. Structure of Existence / 1. Grounding / b. Relata of grounding
The relata of grounding are propositions or facts, but for dependence it is objects and their features [Koslicki]
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
We talk of snow as what stays the same, when it is a heap or drift or expanse [Koslicki]
8. Modes of Existence / A. Relations / 3. Structural Relations
Structures have positions, constituent types and number, and some invariable parts [Koslicki]
8. Modes of Existence / B. Properties / 6. Categorical Properties
'Categorical' properties exist in the actual world, and 'hypothetical' properties in other worlds [Koslicki]
9. Objects / B. Unity of Objects / 1. Unifying an Object / a. Intrinsic unification
I aim to put the notion of structure or form back into the concepts of part, whole and object [Koslicki]
If a whole is just a structure, a dinner party wouldn't need the guests to turn up [Koslicki]
9. Objects / B. Unity of Objects / 3. Unity Problems / c. Statue and clay
The clay is just a part of the statue (its matter); the rest consists of its form or structure [Koslicki]
Statue and clay differ in modal and temporal properties, and in constitution [Koslicki]
9. Objects / C. Structure of Objects / 2. Hylomorphism / c. Form as causal
Structure or form are right at the centre of modern rigorous modes of enquiry [Koslicki]
9. Objects / C. Structure of Objects / 6. Constitution of an Object
There are at least six versions of constitution being identity [Koslicki]
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
For three-dimensionalist parthood must be a three-place relation, including times [Koslicki]
The parts may be the same type as the whole, like a building made of buildings [Koslicki]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
Wholes in modern mereology are intended to replace sets, so they closely resemble them [Koslicki]
Wholes are entities distinct from their parts, and have different properties [Koslicki]
Wholes are not just their parts; a whole is an entity distinct from the proper parts [Koslicki]
9. Objects / D. Essence of Objects / 1. Essences of Objects
An essence and what merely follow from it are distinct [Koslicki]
9. Objects / D. Essence of Objects / 2. Types of Essence
Modern views want essences just to individuate things across worlds and times [Koslicki]
9. Objects / D. Essence of Objects / 3. Individual Essences
Individuals are perceived, but demonstration and definition require universals [Koslicki]
9. Objects / D. Essence of Objects / 4. Essence as Definition
For Fine, essences are propositions true because of identity, so they are just real definitions [Koslicki]
We need a less propositional view of essence, and so must distinguish it clearly from real definitions [Koslicki]
9. Objects / D. Essence of Objects / 7. Essence and Necessity / c. Essentials are necessary
If an object exists, then its essential properties are necessary [Koslicki]
14. Science / A. Basis of Science / 2. Demonstration
In demonstration, the explanatory order must mirror the causal order of the phenomena [Koslicki]
In a demonstration the middle term explains, by being part of the definition [Koslicki]
14. Science / D. Explanation / 1. Explanation / b. Aims of explanation
A good explanation captures the real-world dependence among the phenomena [Koslicki]
14. Science / D. Explanation / 2. Types of Explanation / g. Causal explanations
Greek uses the same word for 'cause' and 'explanation' [Koslicki]
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Discovering the Aristotelian essence of thunder will tell us why thunder occurs [Koslicki]
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
We can abstract to a dependent entity by blocking out features of its bearer [Koslicki]
24. Political Theory / A. Basis of a State / 3. Natural Values / a. Natural freedom
If men are born free, are women born slaves? [Astell]
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
The Kripke/Putnam approach to natural kind terms seems to give them excessive stability [Koslicki]
26. Natural Theory / B. Natural Kinds / 3. Knowing Kinds
Natural kinds support inductive inferences, from previous samples to the next one [Koslicki]
26. Natural Theory / B. Natural Kinds / 4. Source of Kinds
Concepts for species are either intrinsic structure, or relations like breeding or ancestry [Koslicki]
26. Natural Theory / B. Natural Kinds / 5. Reference to Natural Kinds
Should vernacular classifications ever be counted as natural kind terms? [Koslicki]
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
There are apparently no scientific laws concerning biological species [Koslicki]