83 ideas
22070 | Irony is consciousness of abundant chaos [Schlegel,F] |
22069 | Plato has no system. Philosophy is the progression of a mind and development of thoughts [Schlegel,F] |
8721 | An 'impredicative' definition seems circular, because it uses the term being defined [Friend] |
8680 | Classical definitions attempt to refer, but intuitionist/constructivist definitions actually create objects [Friend] |
3678 | Reductio ad absurdum proves an idea by showing that its denial produces contradiction [Friend] |
8705 | Anti-realist see truth as our servant, and epistemically contrained [Friend] |
8713 | In classical/realist logic the connectives are defined by truth-tables [Friend] |
18074 | Intuitionists rely on assertability instead of truth, but assertability relies on truth [Kitcher] |
8708 | Double negation elimination is not valid in intuitionist logic [Friend] |
8694 | Free logic was developed for fictional or non-existent objects [Friend] |
8665 | A 'proper subset' of A contains only members of A, but not all of them [Friend] |
8672 | A 'powerset' is all the subsets of a set [Friend] |
8677 | Set theory makes a minimum ontological claim, that the empty set exists [Friend] |
8666 | Infinite sets correspond one-to-one with a subset [Friend] |
8682 | Major set theories differ in their axioms, and also over the additional axioms of choice and infinity [Friend] |
12430 | Classical logic is our preconditions for assessing empirical evidence [Kitcher] |
12431 | I believe classical logic because I was taught it and use it, but it could be undermined [Kitcher] |
8709 | The law of excluded middle is syntactic; it just says A or not-A, not whether they are true or false [Friend] |
8711 | Intuitionists read the universal quantifier as "we have a procedure for checking every..." [Friend] |
8675 | Paradoxes can be solved by talking more loosely of 'classes' instead of 'sets' [Friend] |
8674 | The Burali-Forti paradox asks whether the set of all ordinals is itself an ordinal [Friend] |
6298 | Kitcher says maths is an idealisation of the world, and our operations in dealing with it [Kitcher, by Resnik] |
12392 | Mathematical a priorism is conceptualist, constructivist or realist [Kitcher] |
18078 | The interest or beauty of mathematics is when it uses current knowledge to advance undestanding [Kitcher] |
12426 | The 'beauty' or 'interest' of mathematics is just explanatory power [Kitcher] |
8667 | The 'integers' are the positive and negative natural numbers, plus zero [Friend] |
8668 | The 'rational' numbers are those representable as fractions [Friend] |
8670 | A number is 'irrational' if it cannot be represented as a fraction [Friend] |
8661 | The natural numbers are primitive, and the ordinals are up one level of abstraction [Friend] |
8664 | Cardinal numbers answer 'how many?', with the order being irrelevant [Friend] |
12395 | Real numbers stand to measurement as natural numbers stand to counting [Kitcher] |
8671 | The 'real' numbers (rationals and irrationals combined) is the Continuum, which has no gaps [Friend] |
12425 | Complex numbers were only accepted when a geometrical model for them was found [Kitcher] |
18071 | A one-operation is the segregation of a single object [Kitcher] |
18066 | The old view is that mathematics is useful in the world because it describes the world [Kitcher] |
8663 | Raising omega to successive powers of omega reveal an infinity of infinities [Friend] |
8662 | The first limit ordinal is omega (greater, but without predecessor), and the second is twice-omega [Friend] |
8669 | Between any two rational numbers there is an infinite number of rational numbers [Friend] |
18083 | With infinitesimals, you divide by the time, then set the time to zero [Kitcher] |
8676 | Is mathematics based on sets, types, categories, models or topology? [Friend] |
8678 | Most mathematical theories can be translated into the language of set theory [Friend] |
8701 | The number 8 in isolation from the other numbers is of no interest [Friend] |
8702 | In structuralism the number 8 is not quite the same in different structures, only equivalent [Friend] |
8699 | Are structures 'ante rem' (before reality), or are they 'in re' (grounded in physics)? [Friend] |
8696 | Structuralist says maths concerns concepts about base objects, not base objects themselves [Friend] |
8695 | Structuralism focuses on relations, predicates and functions, with objects being inessential [Friend] |
8700 | 'In re' structuralism says that the process of abstraction is pattern-spotting [Friend] |
8681 | The big problem for platonists is epistemic: how do we perceive, intuit, know or detect mathematical facts? [Friend] |
12420 | If mathematics comes through intuition, that is either inexplicable, or too subjective [Kitcher] |
12393 | Intuition is no basis for securing a priori knowledge, because it is fallible [Kitcher] |
18061 | Mathematical intuition is not the type platonism needs [Kitcher] |
12387 | Mathematical knowledge arises from basic perception [Kitcher] |
12412 | My constructivism is mathematics as an idealization of collecting and ordering objects [Kitcher] |
18065 | We derive limited mathematics from ordinary things, and erect powerful theories on their basis [Kitcher] |
18077 | The defenders of complex numbers had to show that they could be expressed in physical terms [Kitcher] |
8712 | Mathematics should be treated as true whenever it is indispensable to our best physical theory [Friend] |
12423 | Analyticity avoids abstract entities, but can there be truth without reference? [Kitcher] |
8716 | Formalism is unconstrained, so cannot indicate importance, or directions for research [Friend] |
18069 | Arithmetic is an idealizing theory [Kitcher] |
18068 | Arithmetic is made true by the world, but is also made true by our constructions [Kitcher] |
18070 | We develop a language for correlations, and use it to perform higher level operations [Kitcher] |
18072 | Constructivism is ontological (that it is the work of an agent) and epistemological (knowable a priori) [Kitcher] |
8706 | Constructivism rejects too much mathematics [Friend] |
8707 | Intuitionists typically retain bivalence but reject the law of excluded middle [Friend] |
18063 | Conceptualists say we know mathematics a priori by possessing mathematical concepts [Kitcher] |
18064 | If meaning makes mathematics true, you still need to say what the meanings refer to [Kitcher] |
8704 | Structuralists call a mathematical 'object' simply a 'place in a structure' [Friend] |
18067 | Abstract objects were a bad way of explaining the structure in mathematics [Kitcher] |
12428 | Many necessities are inexpressible, and unknowable a priori [Kitcher] |
12429 | Knowing our own existence is a priori, but not necessary [Kitcher] |
22068 | Poetry is transcendental when it connects the ideal to the real [Schlegel,F] |
12390 | A priori knowledge comes from available a priori warrants that produce truth [Kitcher] |
12418 | In long mathematical proofs we can't remember the original a priori basis [Kitcher] |
12389 | Knowledge is a priori if the experience giving you the concepts thus gives you the knowledge [Kitcher] |
12416 | We have some self-knowledge a priori, such as knowledge of our own existence [Kitcher] |
12413 | A 'warrant' is a process which ensures that a true belief is knowledge [Kitcher] |
20473 | If experiential can defeat a belief, then its justification depends on the defeater's absence [Kitcher, by Casullo] |
18075 | Idealisation trades off accuracy for simplicity, in varying degrees [Kitcher] |
8685 | Studying biology presumes the laws of chemistry, and it could never contradict them [Friend] |
8688 | Concepts can be presented extensionally (as objects) or intensionally (as a characterization) [Friend] |
22030 | For poets free choice is supreme [Schlegel,F] |
22071 | True love is ironic, in the contrast between finite limitations and the infinity of love [Schlegel,F] |
22029 | Irony is the response to conflicts of involvement and attachment [Schlegel,F, by Pinkard] |