Combining Philosophers

All the ideas for Pierre Gassendi, Keith Hossack and Eubulides

expand these ideas     |    start again     |     specify just one area for these philosophers


30 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice guarantees a one-one correspondence from sets to ordinals [Hossack]
The Axiom of Choice is a non-logical principle of set-theory [Hossack]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe we reduce sets to ordinals, rather than the other way round [Hossack]
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
Extensional mereology needs two definitions and two axioms [Hossack]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Plural definite descriptions pick out the largest class of things that fit the description [Hossack]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Plural reference will refer to complex facts without postulating complex things [Hossack]
A plural comprehension principle says there are some things one of which meets some condition [Hossack]
Plural reference is just an abbreviation when properties are distributive, but not otherwise [Hossack]
5. Theory of Logic / L. Paradox / 1. Paradox
If you know your father, but don't recognise your father veiled, you know and don't know the same person [Eubulides, by Dancy,R]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
Plural language can discuss without inconsistency things that are not members of themselves [Hossack]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If you say truly that you are lying, you are lying [Eubulides, by Dancy,R]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / b. The Heap paradox ('Sorites')
Removing one grain doesn't destroy a heap, so a heap can't be destroyed [Eubulides, by Dancy,R]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The theory of the transfinite needs the ordinal numbers [Hossack]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
I take the real numbers to be just lengths [Hossack]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
A plural language gives a single comprehensive induction axiom for arithmetic [Hossack]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
In arithmetic singularists need sets as the instantiator of numeric properties [Hossack]
Set theory is the science of infinity [Hossack]
7. Existence / D. Theories of Reality / 10. Ontological Commitment / a. Ontological commitment
We are committed to a 'group' of children, if they are sitting in a circle [Hossack]
8. Modes of Existence / B. Properties / 8. Properties as Modes
Modes of things exist in some way, without being full-blown substances [Gassendi]
If matter is entirely atoms, anything else we notice in it can only be modes [Gassendi]
9. Objects / C. Structure of Objects / 5. Composition of an Object
Complex particulars are either masses, or composites, or sets [Hossack]
The relation of composition is indispensable to the part-whole relation for individuals [Hossack]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
Leibniz's Law argues against atomism - water is wet, unlike water molecules [Hossack]
The fusion of five rectangles can decompose into more than five parts that are rectangles [Hossack]
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
We observe qualities, and use 'induction' to refer to the substances lying under them [Gassendi]
17. Mind and Body / A. Mind-Body Dualism / 2. Interactionism
Things must have parts to intermingle [Gassendi]
18. Thought / A. Modes of Thought / 1. Thought
A thought can refer to many things, but only predicate a universal and affirm a state of affairs [Hossack]
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / g. Atomism
Atoms are not points, but hard indivisible things, which no force in nature can divide [Gassendi]
How do mere atoms produce qualities like colour, flavour and odour? [Gassendi]
27. Natural Reality / C. Space / 2. Space
We could ignore space, and just talk of the shape of matter [Hossack]