Combining Philosophers

All the ideas for Hans Reichenbach, Bernard Linsky and Karl Leonhard Reinhold

unexpand these ideas     |    start again     |     specify just one area for these philosophers

18 ideas

2. Reason / A. Nature of Reason / 5. Objectivity
Contextual values are acceptable in research, but not in its final evaluation [Reichenbach, by Reiss/Sprenger]
     Full Idea: Reichenbach's claim is interpreted as saying that contextual values, which may have contributed to the discovery of a theory, are irrelevant for justifying the acceptance of a theory, and for assessing how evidence bears on theory.
     From: report of Hans Reichenbach (On Probability and Induction [1938], pp.36-7) by Reiss,J/Spreger,J - Scientific Objectivity 3.2
     A reaction: This influential idea is very helpful. It allows Galileo and co to pursus all sorts of highly personal and quirky lines of enquiry, because we only demand full objectivity when it is all over. Very good!
2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions eliminate descriptions from contexts [Linsky,B]
     Full Idea: A 'contextual' definition shows how to eliminate a description from a context.
     From: Bernard Linsky (Quantification and Descriptions [2014], 2)
     A reaction: I'm trying to think of an example, but what I come up with are better described as 'paraphrases' than as 'definitions'.
2. Reason / D. Definition / 8. Impredicative Definition
'Impredictative' definitions fix a class in terms of the greater class to which it belongs [Linsky,B]
     Full Idea: The ban on 'impredicative' definitions says you can't define a class in terms of a totality to which that class must be seen as belonging.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 1)
     A reaction: So that would be defining 'citizen' in terms of the community to which the citizen belongs? If you are asked to define 'community' and 'citizen' together, where do you start? But how else can it be done? Russell's Reducibility aimed to block this.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Reducibility says any impredicative function has an appropriate predicative replacement [Linsky,B]
     Full Idea: The Axiom of Reducibility avoids impredicativity, by asserting that for any predicate of given arguments defined by quantifying over higher-order functions or classes, there is another co-extensive but predicative function of the same type of arguments.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 1)
     A reaction: Eventually the axiom seemed too arbitrary, and was dropped. Linsky's book explores it.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite descriptions, unlike proper names, have a logical structure [Linsky,B]
     Full Idea: Definite descriptions seem to have a logical structure in a way that proper names do not.
     From: Bernard Linsky (Quantification and Descriptions [2014], 1.1.1)
     A reaction: Thus descriptions have implications which plain names do not.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Definite descriptions theory eliminates the King of France, but not the Queen of England [Linsky,B]
     Full Idea: The theory of definite descriptions may eliminate apparent commitment to such entities as the present King of France, but certainly not to the present Queen of England.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 7.3)
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionalism means what is true of a function is true of coextensive functions [Linsky,B]
     Full Idea: With the principle of extensionality anything true of one propositional functions will be true of every coextensive one.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 6.3)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
The task of logicism was to define by logic the concepts 'number', 'successor' and '0' [Linsky,B]
     Full Idea: The problem for logicism was to find definitions of the primitive notions of Peano's theory, number, successor and 0, in terms of logical notions, so that the postulates could then be derived by logic alone.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 7)
     A reaction: Both Frege and Russell defined numbers as equivalence classes. Successor is easily defined (in various ways) in set theory. An impossible set can exemplify zero. The trouble for logicism is this all relies on sets.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Types are 'ramified' when there are further differences between the type of quantifier and its range [Linsky,B]
     Full Idea: The types is 'ramified' because there are further differences between the type of a function defined in terms of a quantifier ranging over other functions and the type of those other functions, despite the functions applying to the same simple type.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 1)
     A reaction: Not sure I understand this, but it evidently created difficulties for dealing with actual mathematics, and Ramsey showed how you could manage without the ramifications.
The ramified theory subdivides each type, according to the range of the variables [Linsky,B]
     Full Idea: The original ramified theory of types ...furthern subdivides each of the types of the 'simple' theory according to the range of the bound variables used in the definition of each propositional function.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 6)
     A reaction: For a non-intiate like me it certainly sounds disappointing that such a bold and neat theory because a tangle of complications. Ramsey and Russell in the 1920s seem to have dropped the ramifications.
Higher types are needed to distinguished intensional phenomena which are coextensive [Linsky,B]
     Full Idea: The higher types are needed for intensional phenomena, cases where the same class is picked out by distinct propositional functions.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 6.4)
     A reaction: I take it that in this way 'x is renate' can be distinguished from 'x is cordate', a task nowadays performed by possible worlds.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Did logicism fail, when Russell added three nonlogical axioms, to save mathematics? [Linsky,B]
     Full Idea: It is often thought that Logicism was a failure, because after Frege's contradiction, Russell required obviously nonlogical principles, in order to develop mathematics. The axioms of Reducibility, Infinity and Choice are cited.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 6)
     A reaction: Infinity and Choice remain as axioms of the standard ZFC system of set theory, which is why set theory is always assumed to be 'up to its neck' in ontological commitments. Linsky argues that Russell saw ontology in logic.
For those who abandon logicism, standard set theory is a rival option [Linsky,B]
     Full Idea: ZF set theory is seen as a rival to logicism as a foundational scheme. Set theory is for those who have given up the project of reducing mathematics to logic.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 6.1)
     A reaction: Presumably there are other rivals. Set theory has lots of ontological commitments. One could start at the other end, and investigate the basic ontological commitments of arithmetic. I have no idea what those might be.
8. Modes of Existence / B. Properties / 11. Properties as Sets
Construct properties as sets of objects, or say an object must be in the set to have the property [Linsky,B]
     Full Idea: Rather than directly constructing properties as sets of objects and proving neat facts about properties by proxy, we can assert biconditionals, such as that an object has a property if and only if it is in a certain set.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 7.6)
     A reaction: Linsky is describing Russell's method of logical construction. I'm not clear what is gained by this move, but at least it is a variant of the usual irritating expression of properties as sets of objects.
12. Knowledge Sources / B. Perception / 4. Sense Data / b. Nature of sense-data
Subjects distinguish representations, as related both to subject and object [Reinhold]
     Full Idea: In consciousness the subject distinguishes the representation from the subject and object, and relates it to both.
     From: Karl Leonhard Reinhold (Foundations of Philosophical Knowledge [1791], p.78), quoted by Terry Pinkard - German Philosophy 1760-1860 04
     A reaction: This is a reminder that twentieth century analytic discussions of perception were largely recapitulating late Enlightenment German philosophy. This is a very good definition of sense-data. I can think about my representations. Reinhold was a realist.
12. Knowledge Sources / B. Perception / 5. Interpretation
Kant showed that our perceptions are partly constructed from our concepts [Reichenbach]
     Full Idea: It was Kant's great discovery that the object of knowledge is not simply given but constructed, and that it contains conceptual elements not contained in pure perception.
     From: Hans Reichenbach (The Theory of Relativity and A Priori Knowledge [1965], p.49), quoted by J. Alberto Coffa - The Semantic Tradition from Kant to Carnap
26. Natural Theory / C. Causation / 5. Direction of causation
A theory of causal relations yields an asymmetry which defines the direction of time [Reichenbach, by Salmon]
     Full Idea: Reichenbach wanted to implement a causal theory of time. He did not stipulate that causes are temporally prior to their effects. Instead, he constructs a theory of causal relations to yield a causal asymmetry which is used to define temporal priority.
     From: report of Hans Reichenbach (The Direction of Time [1956]) by Wesley Salmon - Probabilistic Causality
     A reaction: I find his approach implausible. I suspect strong empiricism is behind it - that he wants to build from observable causes to unobservable time, not vice versa. But normal intuition sees time as one of the bedrocks of reality, making events possible.
27. Natural Reality / D. Time / 2. Passage of Time / g. Time's arrow
The direction of time is grounded in the direction of causation [Reichenbach, by Ladyman/Ross]
     Full Idea: Reichenbach argued that temporal asymmetry is grounded in causal asymmetry.
     From: report of Hans Reichenbach (The Direction of Time [1956]) by J Ladyman / D Ross - Every Thing Must Go
     A reaction: I'm not sure that I can make sense of giving priority either to time or to causation when it comes to this asymmetry. How do you decide which one is boss?