display all the ideas for this combination of philosophers
11 ideas
10098 | The 'power set' of A is all the subsets of A [George/Velleman] |
10099 | The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman] |
10101 | Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman] |
10103 | Grouping by property is common in mathematics, usually using equivalence [George/Velleman] |
10104 | 'Equivalence' is a reflexive, symmetric and transitive relation; 'same first letter' partitions English words [George/Velleman] |
10096 | Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman] |
10097 | Axiom of Extensionality: for all sets x and y, if x and y have the same elements then x = y [George/Velleman] |
10100 | Axiom of Pairing: for all sets x and y, there is a set z containing just x and y [George/Velleman] |
17900 | The Axiom of Reducibility made impredicative definitions possible [George/Velleman] |
10109 | ZFC can prove that there is no set corresponding to the concept 'set' [George/Velleman] |
10108 | As a reduction of arithmetic, set theory is not fully general, and so not logical [George/Velleman] |