more on this theme     |     more from this thinker


Single Idea 10072

[filed under theme 6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic ]

Full Idea

First Incompleteness Theorem: any properly axiomatised and consistent theory of basic arithmetic must remain incomplete, whatever our efforts to complete it by throwing further axioms into the mix.

Gist of Idea

First Incompleteness: arithmetic must always be incomplete

Source

report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 1.2

Book Ref

Smith,Peter: 'An Introduction to Gödel's Theorems' [CUP 2007], p.5


A Reaction

This is because it is always possible to formulate a well-formed sentence which is not provable within the theory.


The 18 ideas from 'On Formally Undecidable Propositions'

Prior to Gödel we thought truth in mathematics consisted in provability [Gödel, by Quine]
Gödel show that the incompleteness of set theory was a necessity [Gödel, by Hallett,M]
Second Incompleteness: nice theories can't prove their own consistency [Gödel, by Smith,P]
The limitations of axiomatisation were revealed by the incompleteness theorems [Gödel, by Koellner]
If soundness can't be proved internally, 'reflection principles' can be added to assert soundness [Gödel, by Halbach/Leigh]
Gödel's First Theorem sabotages logicism, and the Second sabotages Hilbert's Programme [Smith,P on Gödel]
The undecidable sentence can be decided at a 'higher' level in the system [Gödel]
There can be no single consistent theory from which all mathematical truths can be derived [Gödel, by George/Velleman]
Gödel showed that arithmetic is either incomplete or inconsistent [Gödel, by Rey]
First Incompleteness: arithmetic must always be incomplete [Gödel, by Smith,P]
Arithmetical truth cannot be fully and formally derived from axioms and inference rules [Gödel, by Nagel/Newman]
Gödel's Second says that semantic consequence outruns provability [Gödel, by Hanna]
First Incompleteness: a decent consistent system is syntactically incomplete [Gödel, by George/Velleman]
Second Incompleteness: a decent consistent system can't prove its own consistency [Gödel, by George/Velleman]
There is a sentence which a theory can show is true iff it is unprovable [Gödel, by Smith,P]
'This system can't prove this statement' makes it unprovable either way [Gödel, by Clegg]
Realists are happy with impredicative definitions, which describe entities in terms of other existing entities [Gödel, by Shapiro]
Basic logic can be done by syntax, with no semantics [Gödel, by Rey]