more on this theme     |     more from this thinker


Single Idea 10867

[filed under theme 6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic ]

Full Idea

An approximation of Gödel's Theorem imagines a statement 'This system of mathematics can't prove this statement true'. If the system proves the statement, then it can't prove it. If the statement can't prove the statement, clearly it still can't prove it.

Gist of Idea

'This system can't prove this statement' makes it unprovable either way

Source

report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15

Book Ref

Clegg,Brian: 'Infinity' [Robinson 2003], p.202


A Reaction

Gödel's contribution to this simple idea seems to be a demonstration that formal arithmetic is capable of expressing such a statement.


The 18 ideas from 'On Formally Undecidable Propositions'

Prior to Gödel we thought truth in mathematics consisted in provability [Gödel, by Quine]
Gödel show that the incompleteness of set theory was a necessity [Gödel, by Hallett,M]
Second Incompleteness: nice theories can't prove their own consistency [Gödel, by Smith,P]
The limitations of axiomatisation were revealed by the incompleteness theorems [Gödel, by Koellner]
If soundness can't be proved internally, 'reflection principles' can be added to assert soundness [Gödel, by Halbach/Leigh]
Gödel's First Theorem sabotages logicism, and the Second sabotages Hilbert's Programme [Smith,P on Gödel]
The undecidable sentence can be decided at a 'higher' level in the system [Gödel]
There can be no single consistent theory from which all mathematical truths can be derived [Gödel, by George/Velleman]
Gödel showed that arithmetic is either incomplete or inconsistent [Gödel, by Rey]
First Incompleteness: arithmetic must always be incomplete [Gödel, by Smith,P]
Arithmetical truth cannot be fully and formally derived from axioms and inference rules [Gödel, by Nagel/Newman]
Gödel's Second says that semantic consequence outruns provability [Gödel, by Hanna]
First Incompleteness: a decent consistent system is syntactically incomplete [Gödel, by George/Velleman]
Second Incompleteness: a decent consistent system can't prove its own consistency [Gödel, by George/Velleman]
There is a sentence which a theory can show is true iff it is unprovable [Gödel, by Smith,P]
'This system can't prove this statement' makes it unprovable either way [Gödel, by Clegg]
Realists are happy with impredicative definitions, which describe entities in terms of other existing entities [Gödel, by Shapiro]
Basic logic can be done by syntax, with no semantics [Gödel, by Rey]