more on this theme     |     more from this thinker


Single Idea 13534

[filed under theme 5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic ]

Full Idea

One of the most appealing features of first-order logic is that the two 'turnstiles' (the syntactic single |-, and the semantic double |=), which are the two reasonable notions of logical consequence, actually coincide.

Gist of Idea

In first-order logic syntactic and semantic consequence (|- and |=) nicely coincide

Source

Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)

Book Ref

Wolf,Robert S.: 'A Tour Through Mathematical Logic' [Carus Maths Monographs 2005], p.172


A Reaction

In the excitement about the possibility of second-order logic, plural quantification etc., it seems easy to forget the virtues of the basic system that is the target of the rebellion. The issue is how much can be 'expressed' in first-order logic.


The 19 ideas from 'A Tour through Mathematical Logic'

Model theory uses sets to show that mathematical deduction fits mathematical truth [Wolf,RS]
Modern mathematics has unified all of its objects within set theory [Wolf,RS]
A 'tautology' must include connectives [Wolf,RS]
Deduction Theorem: T∪{P}|-Q, then T|-(P→Q), which justifies Conditional Proof [Wolf,RS]
Universal Generalization: If we prove P(x) with no special assumptions, we can conclude ∀xP(x) [Wolf,RS]
Universal Specification: ∀xP(x) implies P(t). True for all? Then true for an instance [Wolf,RS]
Existential Generalization (or 'proof by example'): if we can say P(t), then we can say something is P [Wolf,RS]
Most deductive logic (unlike ordinary reasoning) is 'monotonic' - we don't retract after new givens [Wolf,RS]
Comprehension Axiom: if a collection is clearly specified, it is a set [Wolf,RS]
Empty Set: ∃x∀y ¬(y∈x). The unique empty set exists [Wolf,RS]
An ordinal is an equivalence class of well-orderings, or a transitive set whose members are transitive [Wolf,RS]
Model theory reveals the structures of mathematics [Wolf,RS]
Model theory 'structures' have a 'universe', some 'relations', some 'functions', and some 'constants' [Wolf,RS]
In first-order logic syntactic and semantic consequence (|- and |=) nicely coincide [Wolf,RS]
First-order logic is weakly complete (valid sentences are provable); we can't prove every sentence or its negation [Wolf,RS]
First-order model theory rests on completeness, compactness, and the Löwenheim-Skolem-Tarski theorem [Wolf,RS]
An 'isomorphism' is a bijection that preserves all structural components [Wolf,RS]
If a theory is complete, only a more powerful language can strengthen it [Wolf,RS]
The LST Theorem is a serious limitation of first-order logic [Wolf,RS]