more from this thinker     |     more from this text


Single Idea 4045

[filed under theme 6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure ]

Full Idea

It has been proposed (on the basis of observations) that young children have three innate principles of counting - one-to-one correspondence of number to item, stable order for numbers, and cardinality (which labels the nth item counted).

Gist of Idea

Children may have three innate principles which enable them to learn to count

Source

Alvin I. Goldman (Phil Applications of Cognitive Science [1993], p.60)

Book Ref

Goldman,Alvin I.: 'Philosophical Applications of Cognitive Science' [Westview 1993], p.60


A Reaction

I like the idea of observed patterns as central (which is the one-to-one principle). But the other two principles are plausible, and show why pure empiricism won't work.


The 32 ideas with the same theme [procedure for finding the size of a group of things]:

Two men do not make one thing, as well as themselves [Aristotle]
When we count, are we adding, or naming numbers? [Aristotle]
Whoever first counted to two must have seen the possibility of infinite counting [Novalis]
Numbers are just names devised for counting [Peirce]
In counting we see the human ability to relate, correspond and represent [Dedekind]
Numbers are needed for counting, so they need a meaning, and not just formal properties [Russell]
Counting explains none of the real problems about the foundations of arithmetic [Russell]
Counting puts an initial segment of a serial ordering 1-1 with some other entities [Sicha]
To know how many, you need a numerical quantifier, as well as equinumerosity [Sicha]
We can count intransitively (reciting numbers) without understanding transitive counting of items [Benacerraf]
Someone can recite numbers but not know how to count things; but not vice versa [Benacerraf]
Children may have three innate principles which enable them to learn to count [Goldman]
Parsons says counting is tagging as first, second, third..., and converting the last to a cardinal [Parsons,C, by Heck]
How many? must first partition an aggregate into sets, and then logic fixes its number [Yourgrau]
Nothing is 'intrinsically' numbered [Yourgrau]
It is controversial whether only 'numerical identity' allows two things to be counted as one [Noonan]
Finite cardinalities don't need numbers as objects; numerical quantifiers will do [White,NP]
Could you be intellectually acquainted with numbers, but unable to count objects? [Scruton]
In counting, numerals are used, not mentioned (as objects that have to correlated) [Heck]
Is counting basically mindless, and independent of the cardinality involved? [Heck]
Counting is the assignment of successively larger cardinal numbers to collections [Heck]
If set theory didn't found mathematics, it is still needed to count infinite sets [Potter]
Mesopotamian numbers applied to specific things, and then became abstract [Watson]
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
Some non-count nouns can be used for counting, as in 'several wines' or 'fewer cheeses' [Laycock]
Some apparent non-count words can take plural forms, such as 'snows' or 'waters' [Laycock]
To count, we must distinguish things, and have a series with successors in it [Morris,M]
Counting needs to distinguish things, and also needs the concept of a successor in a series [Morris,M]
Discriminating things for counting implies concepts of identity and distinctness [Morris,M]
There is no deep reason why we count carrots but not asparagus [Koslicki]
We can still count squares, even if they overlap [Koslicki]
A single object must not be counted twice, which needs knowledge of distinctness (negative identity) [Rumfitt]