more from this thinker     |     more from this text


Single Idea 9191

[filed under theme 6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers ]

Full Idea

It can be argued that the notion of ordinal numbers is more fundamental than that of cardinals. To count objects, we must count them in sequence. ..The theory of ordinals forms the substratum of Cantor's theory of cardinals.

Gist of Idea

Ordinals seem more basic than cardinals, since we count objects in sequence

Source

Michael Dummett (The Philosophy of Mathematics [1998], 5)

Book Ref

'Philosophy 2: further through the subject', ed/tr. Grayling,A.C. [OUP 1998], p.156


A Reaction

Depends what you mean by 'fundamental'. I would take cardinality to be psychologically prior ('that is a lot of sheep'). You can't order people by height without first acquiring some people with differing heights. I vote for cardinals.


The 19 ideas with the same theme [which type of numbers is the most fundamental?]:

One is prior to two, because its existence is implied by two [Aristotle]
God made the integers, all the rest is the work of man [Kronecker]
Dedekind defined the integers, rationals and reals in terms of just the natural numbers [Dedekind, by George/Velleman]
Ordinals can define cardinals, as the smallest ordinal that maps the set [Dedekind, by Heck]
Order, not quantity, is central to defining numbers [Dedekind, by Monk]
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
Quantity is inconceivable without the idea of addition [Frege]
Could a number just be something which occurs in a progression? [Russell, by Hart,WD]
Some claim priority for the ordinals over cardinals, but there is no logical priority between them [Russell]
Ordinals presuppose two relations, where cardinals only presuppose one [Russell]
Properties of numbers don't rely on progressions, so cardinals may be more basic [Russell]
Von Neumann treated cardinals as a special sort of ordinal [Neumann, by Hart,WD]
Addition of quantities is prior to ordering, as shown in cyclic domains like angles [Dummett]
Ordinals seem more basic than cardinals, since we count objects in sequence [Dummett]
If numbers are basically the cardinals (Frege-Russell view) you could know some numbers in isolation [Benacerraf]
Benacerraf says numbers are defined by their natural ordering [Benacerraf, by Fine,K]
A cardinal is the earliest ordinal that has that number of predecessors [Bostock]
One could grasp numbers, and name sizes with them, without grasping ordering [Wright,C]
The natural numbers are primitive, and the ordinals are up one level of abstraction [Friend]