more on this theme     |     more from this text


Single Idea 9692

[filed under theme 4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST ]

Full Idea

The 'union' of two sets is a set containing all the things in either of the sets

Gist of Idea

The 'union' of two sets is a set containing all the things in either of the sets

Source

Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)

Book Ref

Priest,Graham: 'Introduction to Non-Classical Logic' [CUP 2001], p.-6


The 37 ideas from Graham Priest

Someone standing in a doorway seems to be both in and not-in the room [Priest,G, by Sorensen]
Free logic is one of the few first-order non-classical logics [Priest,G]
X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets [Priest,G]
<a,b&62; is a set whose members occur in the order shown [Priest,G]
An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order [Priest,G]
A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets [Priest,G]
A 'set' is a collection of objects [Priest,G]
A 'member' of a set is one of the objects in the set [Priest,G]
a ∈ X says a is an object in set X; a ∉ X says a is not in X [Priest,G]
{x; A(x)} is a set of objects satisfying the condition A(x) [Priest,G]
{a1, a2, ...an} indicates that a set comprising just those objects [Priest,G]
Φ indicates the empty set, which has no members [Priest,G]
{a} is the 'singleton' set of a (not the object a itself) [Priest,G]
A 'singleton' is a set with only one member [Priest,G]
The 'empty set' or 'null set' has no members [Priest,G]
A set is a 'subset' of another set if all of its members are in that set [Priest,G]
A 'proper subset' is smaller than the containing set [Priest,G]
The empty set Φ is a subset of every set (including itself) [Priest,G]
X⊂Y means set X is a 'proper subset' of set Y [Priest,G]
X⊆Y means set X is a 'subset' of set Y [Priest,G]
X = Y means the set X equals the set Y [Priest,G]
X ∩ Y indicates the 'intersection' of sets X and Y, the objects which are in both sets [Priest,G]
X∪Y indicates the 'union' of all the things in sets X and Y [Priest,G]
Y - X is the 'relative complement' of X with respect to Y; the things in Y that are not in X [Priest,G]
The 'relative complement' is things in the second set not in the first [Priest,G]
The 'intersection' of two sets is a set of the things that are in both sets [Priest,G]
The 'union' of two sets is a set containing all the things in either of the sets [Priest,G]
The 'induction clause' says complex formulas retain the properties of their basic formulas [Priest,G]
The least ordinal greater than the set of all ordinals is both one of them and not one of them [Priest,G]
The next set up in the hierarchy of sets seems to be both a member and not a member of it [Priest,G]
The 'least indefinable ordinal' is defined by that very phrase [Priest,G]
'x is a natural number definable in less than 19 words' leads to contradiction [Priest,G]
By diagonalization we can define a real number that isn't in the definable set of reals [Priest,G]
If you know that a sentence is not one of the known sentences, you know its truth [Priest,G]
There are Liar Pairs, and Liar Chains, which fit the same pattern as the basic Liar [Priest,G]
Typically, paradoxes are dealt with by dividing them into two groups, but the division is wrong [Priest,G]
A logic is 'relevant' if premise and conclusion are connected, and 'paraconsistent' allows contradictions [Priest,G, by Friend]