more from this thinker     |     more from this text


Single Idea 17715

[filed under theme 6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers ]

Full Idea

The epistemological burden of showing that the axioms are true is removed if we are only studying pure mathematics. If, however, we want to look at applied mathematics, then this burden returns.

Gist of Idea

The truth of the axioms doesn't matter for pure mathematics, but it does for applied

Source

Edwin D. Mares (A Priori [2011], 11.4)

Book Ref

Mares,Edwin: 'A Priori' [Acumen 2011], p.178


A Reaction

One of those really simple ideas that hits the spot. Nice. The most advanced applied mathematics must rest on counting and measuring.


The 20 ideas with the same theme [general ideas about giving arithmetic a formal basis]:

We know mathematical axioms, such as subtracting equals from equals leaves equals, by a natural light [Leibniz]
Kant suggested that arithmetic has no axioms [Kant, by Shapiro]
Axioms ought to be synthetic a priori propositions [Kant]
The only axioms needed are for equality, addition, and successive numbers [Mill, by Shapiro]
Dedekind gives a base number which isn't a successor, then adds successors and induction [Dedekind, by Hart,WD]
Arithmetical statements can't be axioms, because they are provable [Frege, by Burge]
If principles are provable, they are theorems; if not, they are axioms [Frege]
Numbers have been defined in terms of 'successors' to the concept of 'zero' [Peano, by Blackburn]
Number theory just needs calculation laws and rules for integers [Hilbert]
The definition of order needs a transitive relation, to leap over infinite intermediate terms [Russell]
Axiom of Archimedes: a finite multiple of a lesser magnitude can always exceed a greater [Russell]
It is conceivable that the axioms of arithmetic or propositional logic might be changed [Putnam]
The successor of x is either x and all its members, or just the unit set of x [Benacerraf]
For Zermelo 3 belongs to 17, but for Von Neumann it does not [Benacerraf]
Mathematics is generalisations about singleton functions [Lewis]
The number of Fs is the 'successor' of the Gs if there is a single F that isn't G [Smith,P]
All numbers are related to zero by the ancestral of the successor relation [Smith,P]
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
The truth of the axioms doesn't matter for pure mathematics, but it does for applied [Mares]
It is more explanatory if you show how a number is constructed from basic entities and relations [Koslicki]