more from this thinker     |     more from this text


Single Idea 14157

[filed under theme 6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry ]

Full Idea

In descriptive geometry the first 26 propositions of Euclid hold. In projective geometry the 1st, 7th, 16th and 17th require modification (as a straight line is not a closed series). Those after 26 depend on the postulate of parallels, so aren't assumed.

Gist of Idea

Modern geometries only accept various parts of the Euclid propositions

Source

comment on Euclid (Elements of Geometry [c.290 BCE]) by Bertrand Russell - The Principles of Mathematics §388

Book Ref

Russell,Bertrand: 'Principles of Mathematics' [Routledge 1992], p.404

Related Idea

Idea 14155 Two points have a line joining them (descriptive), a distance (metrical), and a whole line (projective) [Russell, by PG]


The 21 ideas with the same theme [formal starting points for deriving geometry]:

Euclid relied on obvious properties in diagrams, as well as on his axioms [Potter on Euclid]
Euclid's parallel postulate defines unique non-intersecting parallel lines [Euclid, by Friend]
Euclid needs a principle of continuity, saying some lines must intersect [Shapiro on Euclid]
Euclid says we can 'join' two points, but Hilbert says the straight line 'exists' [Euclid, by Bernays]
Modern geometries only accept various parts of the Euclid propositions [Russell on Euclid]
Archimedes defined a straight line as the shortest distance between two points [Archimedes, by Leibniz]
We shouldn't just accept Euclid's axioms, but try to demonstrate them [Leibniz]
Euclid's could be the only viable geometry, if rejection of the parallel line postulate doesn't lead to a contradiction [Benardete,JA on Kant]
The whole of Euclidean geometry derives from a basic equation and transformations [Hilbert]
Euclid axioms concerns possibilities of construction, but Hilbert's assert the existence of objects [Hilbert, by Chihara]
Hilbert's formalisation revealed implicit congruence axioms in Euclid [Hilbert, by Horsten/Pettigrew]
Hilbert's geometry is interesting because it captures Euclid without using real numbers [Hilbert, by Field,H]
Geometry is united by the intuitive axioms of projective geometry [Russell, by Musgrave]
Tarski improved Hilbert's geometry axioms, and without set-theory [Tarski, by Feferman/Feferman]
There are four different possible conventional accounts of geometry [Quine]
Modern axioms of geometry do not need the real numbers [Bostock]
'Metric' axioms uses functions, points and numbers; 'synthetic' axioms give facts about space [Field,H]
Euclid has a unique parallel, spherical geometry has none, and saddle geometry has several [Hart,WD]
Analytic geometry gave space a mathematical structure, which could then have axioms [Chihara]
The culmination of Euclidean geometry was axioms that made all models isomorphic [McGee]
In non-Euclidean geometry, all Euclidean theorems are valid that avoid the fifth postulate [Walicki]