structure for 'Formal Logic'    |     alphabetical list of themes    |     unexpand these ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets

[general points about the basics of set theory]

33 ideas
Cantor gives informal versions of ZF axioms as ways of getting from one set to another [Cantor, by Lake]
     Full Idea: Cantor gives informal versions of the axioms of ZF as ways of getting from one set to another.
     From: report of George Cantor (Later Letters to Dedekind [1899]) by John Lake - Approaches to Set Theory 1.6
     A reaction: Lake suggests that it should therefore be called CZF.
Axiomatising set theory makes it all relative [Skolem]
     Full Idea: Axiomatising set theory leads to a relativity of set-theoretic notions, and this relativity is inseparably bound up with every thoroughgoing axiomatisation.
     From: Thoralf Skolem (Remarks on axiomatised set theory [1922], p.296)
Zermelo showed that the ZF axioms in 1930 were non-categorical [Zermelo, by Hallett,M]
     Full Idea: Zermelo's paper sets out to show that the standard set-theoretic axioms (what he calls the 'constitutive axioms', thus the ZF axioms minus the axiom of infinity) have an unending sequence of different models, thus that they are non-categorical.
     From: report of Ernst Zermelo (On boundary numbers and domains of sets [1930]) by Michael Hallett - Introduction to Zermelo's 1930 paper p.1209
     A reaction: Hallett says later that Zermelo is working with second-order set theory. The addition of an Axiom of Infinity seems to have aimed at addressing the problem, and the complexities of that were pursued by Gödel.
ZFC: Existence, Extension, Specification, Pairing, Unions, Powers, Infinity, Choice [Zermelo, by Clegg]
     Full Idea: Zermelo-Fraenkel axioms: Existence (at least one set); Extension (same elements, same set); Specification (a condition creates a new set); Pairing (two sets make a set); Unions; Powers (all subsets make a set); Infinity (set of successors); Choice
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15
Zermelo published his axioms in 1908, to secure a controversial proof [Zermelo, by Maddy]
     Full Idea: Zermelo proposed his listed of assumptions (including the controversial Axiom of Choice) in 1908, in order to secure his controversial proof of Cantor's claim that ' we can always bring any well-defined set into the form of a well-ordered set'.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1
     A reaction: This is interesting because it sometimes looks as if axiom systems are just a way of tidying things up. Presumably it is essential to get people to accept the axioms in their own right, the 'old-fashioned' approach that they be self-evident.
Set theory can be reduced to a few definitions and seven independent axioms [Zermelo]
     Full Idea: I intend to show how the entire theory created by Cantor and Dedekind can be reduced to a few definitions and seven principles, or axioms, which appear to be mutually independent.
     From: Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908], Intro)
     A reaction: The number of axioms crept up to nine or ten in subsequent years. The point of axioms is maximum reduction and independence from one another. He says nothing about self-evidence (though Boolos claimed a degree of that).
Zermelo made 'set' and 'member' undefined axioms [Zermelo, by Chihara]
     Full Idea: The terms 'set' and 'is a member of' are primitives of Zermelo's 1908 axiomatization of set theory. They are not given model-theoretic analyses or definitions.
     From: report of Ernst Zermelo (works [1920]) by Charles Chihara - A Structural Account of Mathematics 7.5
     A reaction: This looks like good practice if you want to work with sets, but not so hot if you are interested in metaphysics.
For Zermelo's set theory the empty set is zero and the successor of each number is its unit set [Zermelo, by Blackburn]
     Full Idea: For Zermelo's set theory the empty set is zero and the successor of each number is its unit set.
     From: report of Ernst Zermelo (works [1920]) by Simon Blackburn - Oxford Dictionary of Philosophy p.280
We perceive the objects of set theory, just as we perceive with our senses [Gödel]
     Full Idea: We have something like perception of the objects of set theory, shown by the axioms forcing themselves on us as being true. I don't see why we should have less confidence in this kind of perception (i.e. mathematical intuition) than in sense perception.
     From: Kurt Gödel (What is Cantor's Continuum Problem? [1964], p.483), quoted by Michčle Friend - Introducing the Philosophy of Mathematics 2.4
     A reaction: A famous strong expression of realism about the existence of sets. It is remarkable how the ingredients of mathematics spread themselves before the mind like a landscape, inviting journeys - but I think that just shows how minds cope with abstractions.
Gödel show that the incompleteness of set theory was a necessity [Gödel, by Hallett,M]
     Full Idea: Gödel's incompleteness results of 1931 show that all axiom systems precise enough to satisfy Hilbert's conception are necessarily incomplete.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Michael Hallett - Introduction to Zermelo's 1930 paper p.1215
     A reaction: [Hallett italicises 'necessarily'] Hilbert axioms have to be recursive - that is, everything in the system must track back to them.
Von Neumann defines each number as the set of all smaller numbers [Neumann, by Blackburn]
     Full Idea: Von Neumann defines each number as the set of all smaller numbers.
     From: report of John von Neumann (works [1935]) by Simon Blackburn - Oxford Dictionary of Philosophy p.280
ZFC could contain a contradiction, and it can never prove its own consistency [MacLane]
     Full Idea: We have at hand no proof that the axioms of ZFC for set theory will never yield a contradiction, while Gödel's second theorem tells us that such a consistency proof cannot be conducted within ZFC.
     From: Saunders MacLane (Mathematics: Form and Function [1986], p.406), quoted by Penelope Maddy - Naturalism in Mathematics
     A reaction: Maddy quotes this, while defending set theory as the foundation of mathematics, but it clearly isn't the most secure foundation that could be devised. She says the benefits of set theory do not need guaranteed consistency (p.30).
NF has no models, but just blocks the comprehension axiom, to avoid contradictions [Quine, by Dummett]
     Full Idea: Quine's New Foundations system of set theory, devised with no model in mind, but on the basis of a hunch that a purely formal restriction on the comprehension axiom would block all contradictions.
     From: report of Willard Quine (New Foundations for Mathematical Logic [1937]) by Michael Dummett - Frege philosophy of mathematics Ch.18
     A reaction: The point is that Quine (who had an ontological preference for 'desert landscapes') attempted to do without an ontological commitment to objects (and their subsequent models), with a purely formal system. Quine's NF is not now highly regarded.
ZF set theory has variables which range over sets, 'equals' and 'member', and extensionality [Dummett]
     Full Idea: ZF set theory is a first-order axiomatization. Variables range over sets, there are no second-order variables, and primitive predicates are just 'equals' and 'member of'. The axiom of extensionality says sets with the same members are identical.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 7)
     A reaction: If the eleven members of the cricket team are the same as the eleven members of the hockey team, is the cricket team the same as the hockey team? Our cricket team is better than our hockey team, so different predicates apply to them.
The main alternative to ZF is one which includes looser classes as well as sets [Dummett]
     Full Idea: The main alternative to ZF is two-sorted theories, with some variables ranging over classes. Classes have more generous existence assumptions: there is a universal class, containing all sets, and a class containing all ordinals. Classes are not members.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 7.1.1)
     A reaction: My intuition is to prefer strict systems when it comes to logical theories. The whole point is precision. Otherwise we could just think about things, and skip all this difficult symbolic stuff.
A few axioms of set theory 'force themselves on us', but most of them don't [Boolos]
     Full Idea: Maybe the axioms of extensionality and the pair set axiom 'force themselves on us' (Gödel's phrase), but I am not convinced about the axioms of infinity, union, power or replacement.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.130)
     A reaction: Boolos is perfectly happy with basic set theory, but rather dubious when very large cardinals come into the picture.
We could add axioms to make sets either as small or as large as possible [Bostock]
     Full Idea: We could add the axiom that all sets are constructible (V = L), making the universe of sets as small as possible, or add the axiom that there is a supercompact cardinal (SC), making the universe as large as we no know how to.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: Bostock says most mathematicians reject the first option, and are undecided about the second option.
Set theory reduces to a mereological theory with singletons as the only atoms [Lewis, by MacBride]
     Full Idea: Lewis has shown that set theory may be reduced to a mereological theory in which singletons are the only atoms.
     From: report of David Lewis (Parts of Classes [1991]) by Fraser MacBride - Review of Chihara's 'Structural Acc of Maths' p.80
     A reaction: Presumably the axiom of extensionality, that a set is no more than its members, translates into unrestricted composition, that any parts will make an object. Difficult territory, but I suspect that this is of great importance in metaphysics.
Set theory has some unofficial axioms, generalisations about how to understand it [Lewis]
     Full Idea: Set theory has its unofficial axioms, traditional remarks about the nature of classes. They are never argued, but are passed heedlessly from one author to another. One of these says that the classes are nowhere: they are outside space and time.
     From: David Lewis (Parts of Classes [1991], 2.1)
     A reaction: Why don't the people who write formal books on set theory ever say things like this?
There cannot be a set theory which is complete [Smith,P]
     Full Idea: By Gödel's First Incompleteness Theorem, there cannot be a negation-complete set theory.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 01.3)
     A reaction: This means that we can never prove all the truths of a system of set theory.
The standard Z-F Intuition version of set theory has about ten agreed axioms [Benardete,JA, by PG]
     Full Idea: Zermelo proposed seven axioms for set theory, with Fraenkel adding others, to produce the standard Z-F Intuition.
     From: report of José A. Benardete (Metaphysics: the logical approach [1989], Ch.17) by PG - Db (ideas)
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
The first-order ZF axiomatisation is highly non-categorical [Hallett,M]
     Full Idea: The first-order Sermelo-Fraenkel axiomatisation is highly non-categorical.
     From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1213)
Non-categoricity reveals a sort of incompleteness, with sets existing that the axioms don't reveal [Hallett,M]
     Full Idea: The non-categoricity of the axioms which Zermelo demonstrates reveals an incompleteness of a sort, ....for this seems to show that there will always be a set (indeed, an unending sequence) that the basic axioms are incapable of revealing to be sets.
     From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1215)
     A reaction: Hallett says the incompleteness concerning Zermelo was the (transfinitely) indefinite iterability of the power set operation (which is what drives the 'iterative conception' of sets).
New axioms are being sought, to determine the size of the continuum [Maddy]
     Full Idea: In current set theory, the search is on for new axioms to determine the size of the continuum.
     From: Penelope Maddy (Believing the Axioms I [1988], §0)
     A reaction: This sounds the wrong way round. Presumably we seek axioms that fix everything else about set theory, and then check to see what continuum results. Otherwise we could just pick our continuum, by picking our axioms.
A Large Cardinal Axiom would assert ever-increasing stages in the hierarchy [Maddy]
     Full Idea: A possible axiom is the Large Cardinal Axiom, which asserts that there are more and more stages in the cumulative hierarchy. Infinity can be seen as the first of these stages, and Replacement pushes further in this direction.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.5)
Determinacy: an object is either in a set, or it isn't [Zalabardo]
     Full Idea: Principle of Determinacy: For every object a and every set S, either a is an element of S or a is not an element of S.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.2)
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman]
     Full Idea: ZFC is a theory concerned only with sets. Even the elements of all of the sets studied in ZFC are also sets (whose elements are also sets, and so on). This rests on one clearly pure set, the empty set Φ. ..Mathematics only needs pure sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This makes ZFC a much more metaphysically comfortable way to think about sets, because it can be viewed entirely formally. It is rather hard to disentangle a chair from the singleton set of that chair.
Maybe set theory need not be well-founded [Varzi]
     Full Idea: There are some proposals for non-well-founded set theory (tolerating cases of self-membership and membership circularities).
     From: Achille Varzi (Mereology [2003], 2.1)
     A reaction: [He cites Aczel 1988, and Barwise and Moss 1996]
Major set theories differ in their axioms, and also over the additional axioms of choice and infinity [Friend]
     Full Idea: Zermelo-Fraenkel and Gödel-Bernays set theory differ over the notions of ordinal construction and over the notion of class, among other things. Then there are optional axioms which can be attached, such as the axiom of choice and the axiom of infinity.
     From: Michčle Friend (Introducing the Philosophy of Mathematics [2007], 2.6)
     A reaction: This summarises the reasons why we cannot just talk about 'set theory' as if it was a single concept. The philosophical interest I would take to be found in disentangling the ontological commitments of each version.
The iterated conception of set requires continual increase in axiom strength [Rumfitt]
     Full Idea: We are doomed to postulate an infinite sequence of successively stronger axiom systems as we try to spell out what is involved in iterating the power set operation 'as far as possible'.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 9.3)
     A reaction: [W.W. Tait is behind this idea] The problem with set theory, then, especially as a foundation of mathematics, is that it doesn't just expand, but has to keep reinventing itself. The 'large cardinal axioms' are what is referred to.