structure for 'Mathematics'    |     alphabetical list of themes    |     unexpand these ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number

[the various families of numbers]

25 ideas
An assumption that there is a largest prime leads to a contradiction [Euclid, by Brown,JR]
     Full Idea: Assume a largest prime, then multiply the primes together and add one. The new number isn't prime, because we assumed a largest prime; but it can't be divided by a prime, because the remainder is one. So only a larger prime could divide it. Contradiction.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by James Robert Brown - Philosophy of Mathematics Ch.1
     A reaction: Not only a very elegant mathematical argument, but a model for how much modern logic proceeds, by assuming that the proposition is false, and then deducing a contradiction from it.
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
     Full Idea: In 1878 Cantor published the unexpected result that one can put the points on a plane, or indeed any n-dimensional space, into one-to-one correspondence with the points on a line.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
Cardinals say how many, and reals give measurements compared to a unit quantity [Frege]
     Full Idea: The cardinals and the reals are completely disjoint domains. The cardinal numbers answer the question 'How many objects of a given kind are there?', but the real numbers are for measurement, saying how large a quantity is compared to a unit quantity.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §157), quoted by Michael Dummett - Frege philosophy of mathematics Ch.19
     A reaction: We might say that cardinals are digital and reals are analogue. Frege is unusual in totally separating them. They map onto one another, after all. Cardinals look like special cases of reals. Reals are dreams about the gaps between cardinals.
New numbers solve problems: negatives for subtraction, fractions for division, complex for equations [Russell]
     Full Idea: Every generalisation of number has presented itself as needed for some simple problem. Negative numbers are needed to make subtraction always possible; fractions to make division always possible; complex numbers to make solutions of equations possible.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VII)
     A reaction: Doesn't this rather suggest that we made them up? If new problems turn up, we'll invent another lot. We already have added 'surreal' numbers.
Russell's approach had to treat real 5/8 as different from rational 5/8 [Russell, by Dummett]
     Full Idea: Russell defined the rationals as ratios of integers, and was therefore forced to treat the real number 5/8 as an object distinct from the rational 5/8.
     From: report of Bertrand Russell (The Principles of Mathematics [1903]) by Michael Dummett - Frege philosophy of mathematics 21 'Frege's'
Ordinals result from likeness among relations, as cardinals from similarity among classes [Russell]
     Full Idea: Ordinal numbers result from likeness among relations, as cardinals from similarity among classes.
     From: Bertrand Russell (The Principles of Mathematics [1903], §293)
A prime number is one which is measured by a unit alone [Dummett]
     Full Idea: A prime number is one which is measured by a unit alone.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 7 Def 11)
     A reaction: We might say that the only way of 'reaching' or 'constructing' a prime is by incrementing by one till you reach it. That seems a pretty good definition. 64, for example, can be reached by a large number of different routes.
Points can be 'dense' by unending division, but must meet a tougher criterion to be 'continuous' [Harré/Madden]
     Full Idea: Points can be 'dense' by indefinitely prolonged division. To be 'continuous' is more stringent; the points must be cut into two sets, and meet the condition laid down by Boscovich and Dedekind.
     From: Harré,R./Madden,E.H. (Causal Powers [1975], 6.IV)
     A reaction: This idea goes with Idea 15274, which lays down the specification of the Dedekind Cut, which is the criterion for the real (and continuous) numbers. Harré and Madden are interested in whether time can support continuity of objects.
Each type of number has its own characteristic procedure of introduction [Badiou]
     Full Idea: There is a heterogeneity of introductory procedures of different classical number types: axiomatic for natural numbers, structural for ordinals, algebraic for negative and rational numbers, topological for reals, mainly geometric for complex numbers.
     From: Alain Badiou (Briefings on Existence [1998], 11)
Must we accept numbers as existing when they no longer consist of units? [Badiou]
     Full Idea: Do we have to confer existence on numbers whose principle is to no longer consist of units?
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: This very nicely expresses what seems to me perhaps the most important question in the philosophy of mathematics. I am reluctant to accept such 'unitless' numbers, but I then feel hopelessly old-fashioned and naïve. What to do?
Each addition changes the ordinality but not the cardinality, prior to aleph-1 [Bostock]
     Full Idea: If you add to the ordinals you produce many different ordinals, each measuring the length of the sequence of ordinals less than it. They each have cardinality aleph-0. The cardinality eventually increases, but we can't say where this break comes.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
ω + 1 is a new ordinal, but its cardinality is unchanged [Bostock]
     Full Idea: If we add ω onto the end of 0,1,2,3,4..., it then has a different length, of ω+1. It has a different ordinal (since it can't be matched with its first part), but the same cardinal (since adding 1 makes no difference).
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: [compressed] The ordinals and cardinals coincide up to ω, but this is the point at which they come apart.
Negatives, rationals, irrationals and imaginaries are all postulated to solve baffling equations [Benardete,JA]
     Full Idea: The Negative numbers are postulated (magic word) to solve x=5-8, Rationals postulated to solve 2x=3, Irrationals for x-squared=2, and Imaginaries for x-squared=-1. (…and Zero for x=5-5) …and x/0 remains eternally open.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.14)
Natural numbers are seen in terms of either their ordinality (Peano), or cardinality (set theory) [Benardete,JA]
     Full Idea: One approaches the natural numbers in terms of either their ordinality (Peano), or cardinality (set theory).
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.17)
Dedekind cuts lead to the bizarre idea that there are many different number 1's [Fine,K]
     Full Idea: Because of Dedekind's definition of reals by cuts, there is a bizarre modern doctrine that there are many 1's - the natural number 1, the rational number 1, the real number 1, and even the complex number 1.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
     A reaction: See Idea 10572.
Complex numbers can be defined as reals, which are defined as rationals, then integers, then naturals [Shapiro]
     Full Idea: 'Definitions' of integers as pairs of naturals, rationals as pairs of integers, reals as Cauchy sequences of rationals, and complex numbers as pairs of reals are reductive foundations of various fields.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.1)
     A reaction: On p.30 (bottom) Shapiro objects that in the process of reduction the numbers acquire properties they didn't have before.
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
Rational numbers give answers to division problems with integers [George/Velleman]
     Full Idea: We can think of rational numbers as providing answers to division problems involving integers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Cf. Idea 10102.
The integers are answers to subtraction problems involving natural numbers [George/Velleman]
     Full Idea: In defining the integers in set theory, our definition will be motivated by thinking of the integers as answers to subtraction problems involving natural numbers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Typical of how all of the families of numbers came into existence; they are 'invented' so that we can have answers to problems, even if we can't interpret the answers. It it is money, we may say the minus-number is a 'debt', but is it? Cf Idea 10106.
The whole numbers are 'natural'; 'rational' numbers include fractions; the 'reals' include root-2 etc. [Orenstein]
     Full Idea: The 'natural' numbers are the whole numbers 1, 2, 3 and so on. The 'rational' numbers consist of the natural numbers plus the fractions. The 'real' numbers include the others, plus numbers such a pi and root-2, which cannot be expressed as fractions.
     From: Alex Orenstein (W.V. Quine [2002], Ch.2)
     A reaction: The 'irrational' numbers involved entities such as root-minus-1. Philosophical discussions in ontology tend to focus on the existence of the real numbers.
1 and 0, then add for naturals, subtract for negatives, divide for rationals, take roots for irrationals [Kaplan/Kaplan]
     Full Idea: You have 1 and 0, something and nothing. Adding gives us the naturals. Subtracting brings the negatives into light; dividing, the rationals; only with a new operation, taking of roots, do the irrationals show themselves.
     From: R Kaplan / E Kaplan (The Art of the Infinite [2003], 1 'Mind')
     A reaction: The suggestion is constructivist, I suppose - that it is only operations that produce numbers. They go on to show that complex numbers don't quite fit the pattern.
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
     Full Idea: One reason to introduce the rational numbers is that it simplifes the theory of division, since every rational number is divisible by every nonzero rational number, while the analogous statement is false for the natural numbers.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.3)
     A reaction: That is, with rations every division operation has an answer.
The 'integers' are the positive and negative natural numbers, plus zero [Friend]
     Full Idea: The set of 'integers' is all of the negative natural numbers, and zero, together with the positive natural numbers.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Zero always looks like a misfit at this party. Credit and debit explain positive and negative nicely, but what is the difference between having no money, and money being irrelevant? I can be 'broke', but can the North Pole be broke?
The 'rational' numbers are those representable as fractions [Friend]
     Full Idea: The 'rational' numbers are all those that can be represented in the form m/n (i.e. as fractions), where m and n are natural numbers different from zero.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Pythagoreans needed numbers to stop there, in order to represent the whole of reality numerically. See irrational numbers for the ensuing disaster. How can a universe with a finite number of particles contain numbers that are not 'rational'?
A number is 'irrational' if it cannot be represented as a fraction [Friend]
     Full Idea: A number is 'irrational' just in case it cannot be represented as a fraction. An irrational number has an infinite non-repeating decimal expansion. Famous examples are pi and e.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: There must be an infinite number of irrational numbers. You could, for example, take the expansion of pi, and change just one digit to produce a new irrational number, and pi has an infinity of digits to tinker with.