structure for 'Formal Logic'    |     alphabetical list of themes    |     unexpand these ideas

4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic

[logic which uses 'provable' in place of 'true']

15 ideas
Mathematical statements and entities that result from an infinite process must lack a truth-value [Dummett]
     Full Idea: On an intuitionistic view, neither the truth-value of a statement nor any other mathematical entity can be given as the final result of an infinite process, since an infinite process is precisely one that does not have a final result.
     From: Michael Dummett (Elements of Intuitionism (2nd ed) [2000], p.41), quoted by Ian Rumfitt - The Boundary Stones of Thought 7.3
     A reaction: This is rather a persuasive reason to sympathise with intuitionism. Mathematical tricks about 'limits' have lured us into believing in completed infinities, but actually that idea is incoherent.
Dummett says classical logic rests on meaning as truth, while intuitionist logic rests on assertability [Dummett, by Kitcher]
     Full Idea: Dummett argues that classical logic depends on the choice of the concept of truth as central to the theory of meaning, while for the intuitionist the concept of assertability occupies this position.
     From: report of Michael Dummett (The philosophical basis of intuitionist logic [1973]) by Philip Kitcher - The Nature of Mathematical Knowledge 06.5
     A reaction: Since I can assert any nonsense I choose, this presumably means 'warranted' assertability, which is tied to the concept of proof in mathematics. You can reason about falsehoods, or about uninterpreted variables. Can you 'assert' 'Fx'?
Classical interdefinitions of logical constants and quantifiers is impossible in intuitionism [Bostock]
     Full Idea: None of the classical ways of defining one logical constant in terms of others is available in intuitionist logic (and this includes the two quantifiers).
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
Intuitionists rely on assertability instead of truth, but assertability relies on truth [Kitcher]
     Full Idea: Though it may appear that the intuitionist is providing an account of the connectives couched in terms of assertability conditions, the notion of assertability is a derivative one, ultimately cashed out by appealing to the concept of truth.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: I have quite a strong conviction that Kitcher is right. All attempts to eliminate truth, as some sort of ideal at the heart of ordinary talk and of reasoning, seems to me to be doomed.
Is classical logic a part of intuitionist logic, or vice versa? [Burgess]
     Full Idea: From one point of view intuitionistic logic is a part of classical logic, missing one axiom, from another classical logic is a part of intuitionistic logic, missing two connectives, intuitionistic v and →
     From: John P. Burgess (Philosophical Logic [2009], 6.4)
It is still unsettled whether standard intuitionist logic is complete [Burgess]
     Full Idea: The question of the completeness of the full intuitionistic logic for its intended interpretation is not yet fully resolved.
     From: John P. Burgess (Philosophical Logic [2009], 6.9)
You can employ intuitionist logic without intuitionism about mathematics [Sider]
     Full Idea: Not everyone who employs intuitionistic logic is an intuitionist about mathematics.
     From: Theodore Sider (Logic for Philosophy [2010], 7.4.1)
     A reaction: This seems worthy of note, since it may be tempting to reject the logic because of the implausibility of the philosophy of mathematics. I must take intuitionist logic more seriously.
Intuitionism as natural deduction has no rule for negation [Mares]
     Full Idea: In intuitionist logic each connective has one introduction and one elimination rule attached to it, but in the classical system we have to add an extra rule for negation.
     From: Edwin D. Mares (Negation [2014], 5.5)
     A reaction: How very intriguing. Mares says there are other ways to achieve classical logic, but they all seem rather cumbersome.
Intuitionist logic looks best as natural deduction [Mares]
     Full Idea: Intuitionist logic appears most attractive in the form of a natural deduction system.
     From: Edwin D. Mares (Negation [2014], 5.5)
(∀x)(A v B) |- (∀x)A v (∃x)B) is valid in classical logic but invalid intuitionistically [Beall/Restall]
     Full Idea: The inference of 'distribution' (∀x)(A v B) |- (∀x)A v (∃x)B) is valid in classical logic but invalid intuitionistically. It is straightforward to construct a 'stage' at which the LHS is true but the RHS is not.
     From: JC Beall / G Restall (Logical Pluralism [2006], 6.1.2)
     A reaction: This seems to parallel the iterative notion in set theory, that you must construct your hierarchy. All part of the general 'constructivist' approach to things. Is some kind of mad platonism the only alternative?
Double negation elimination is not valid in intuitionist logic [Friend]
     Full Idea: In intuitionist logic, if we do not know that we do not know A, it does not follow that we know A, so the inference (and, in general, double negation elimination) is not intuitionistically valid.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: That inference had better not be valid in any logic! I am unaware of not knowing the birthday of someone I have never heard of. Propositional attitudes such as 'know' are notoriously difficult to explain in formal logic.
Rejecting double negation elimination undermines reductio proofs [Colyvan]
     Full Idea: The intuitionist rejection of double negation elimination undermines the important reductio ad absurdum proof in classical mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
Showing a disproof is impossible is not a proof, so don't eliminate double negation [Colyvan]
     Full Idea: In intuitionist logic double negation elimination fails. After all, proving that there is no proof that there can't be a proof of S is not the same thing as having a proof of S.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: I do like people like Colyvan who explain things clearly. All of this difficult stuff is understandable, if only someone makes the effort to explain it properly.
It is the second-order part of intuitionistic logic which actually negates some classical theorems [Rumfitt]
     Full Idea: Although intuitionistic propositional and first-order logics are sub-systems of the corresponding classical systems, intuitionistic second-order logic affirms the negations of some classical theorems.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
Intuitionists can accept Double Negation Elimination for decidable propositions [Rumfitt]
     Full Idea: Double Negation Elimination is a rule of inference which the classicist accepts without restriction, but which the intuitionist accepts only for decidable propositions.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
     A reaction: This cures me of my simplistic understanding that intuitionists just reject the rules about double negation.