structure for 'Formal Logic'    |     alphabetical list of themes    |     unexpand these ideas

4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST

[main concepts which are distinctive of set theory]

40 ideas
∈ says the whole set is in the other; ⊆ says the members of the subset are in the other [Enderton]
     Full Idea: To know if A ∈ B, we look at the set A as a single object, and check if it is among B's members. But if we want to know whether A ⊆ B then we must open up set A and check whether its various members are among the members of B.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:04)
     A reaction: This idea is one of the key ideas to grasp if you are going to get the hang of set theory. John ∈ USA ∈ UN, but John is not a member of the UN, because he isn't a country. See Idea 12337 for a special case.
The 'ordered pair' <x,y> is defined to be {{x}, {x,y}} [Enderton]
     Full Idea: The 'ordered pair' <x,y> is defined to be {{x}, {x,y}}; hence it can be proved that <u,v> = <x,y> iff u = x and v = y (given by Kuratowski in 1921). ...The definition is somewhat arbitrary, and others could be used.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:36)
     A reaction: This looks to me like one of those regular cases where the formal definitions capture all the logical behaviour of the concept that are required for inference, while failing to fully capture the concept for ordinary conversation.
A 'linear or total ordering' must be transitive and satisfy trichotomy [Enderton]
     Full Idea: A 'linear ordering' (or 'total ordering') on A is a binary relation R meeting two conditions: R is transitive (of xRy and yRz, the xRz), and R satisfies trichotomy (either xRy or x=y or yRx).
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:62)
The 'powerset' of a set is all the subsets of a given set [Enderton]
     Full Idea: The 'powerset' of a set is all the subsets of a given set. Thus: PA = {x : x ⊆ A}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
Two sets are 'disjoint' iff their intersection is empty [Enderton]
     Full Idea: Two sets are 'disjoint' iff their intersection is empty (i.e. they have no members in common).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'domain' of a relation is the set of members of ordered pairs in the relation [Enderton]
     Full Idea: The 'domain' of a relation is the set of all objects that are members of ordered pairs that are members of the relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'relation' is a set of ordered pairs [Enderton]
     Full Idea: A 'relation' is a set of ordered pairs. The ordering relation on the numbers 0-3 is captured by - in fact it is - the set of ordered pairs {<0,1>,<0,2>,<0,3>,<1,2>,<1,3>,<2,3>}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
     A reaction: This can't quite be a definition of order among numbers, since it relies on the notion of a 'ordered' pair.
A function 'maps A into B' if the relating things are set A, and the things related to are all in B [Enderton]
     Full Idea: A function 'maps A into B' if the domain of relating things is set A, and the things related to are all in B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A function 'maps A onto B' if the relating things are set A, and the things related to are set B [Enderton]
     Full Idea: A function 'maps A onto B' if the domain of relating things is set A, and the things related to are set B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'reflexive' on a set if every member bears the relation to itself [Enderton]
     Full Idea: A relation is 'reflexive' on a set if every member of the set bears the relation to itself.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'symmetric' on a set if every ordered pair has the relation in both directions [Enderton]
     Full Idea: A relation is 'symmetric' on a set if every ordered pair in the set has the relation in both directions.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation satisfies 'trichotomy' if all pairs are either relations, or contain identical objects [Enderton]
     Full Idea: A relation satisfies 'trichotomy' on a set if every ordered pair is related (in either direction), or the objects are identical.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second [Enderton]
     Full Idea: A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'transitive' if it can be carried over from two ordered pairs to a third [Enderton]
     Full Idea: A relation is 'transitive' on a set if the relation can be carried over from two ordered pairs to a third.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'function' is a relation in which each object is related to just one other object [Enderton]
     Full Idea: A 'function' is a relation which is single-valued. That is, for each object, there is only one object in the function set to which that object is related.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
There is 'transivity' iff membership ∈ also means inclusion ⊆ [Badiou]
     Full Idea: 'Transitivity' signifies that all of the elements of the set are also parts of the set. If you have α∈Β, you also have α⊆Β. This correlation of membership and inclusion gives a stability which is the sets' natural being.
     From: Alain Badiou (Briefings on Existence [1998], 11)
Classes divide into subclasses in many ways, but into members in only one way [Lewis]
     Full Idea: A class divides exhaustively into subclasses in many different ways; whereas a class divides exhaustively into members in only one way.
     From: David Lewis (Parts of Classes [1991], 1.2)
A subclass of a subclass is itself a subclass; a member of a member is not in general a member [Lewis]
     Full Idea: Just as a part of a part is itself a part, so a subclass of a subclass is itself a subclass; whereas a member of a member is not in general a member.
     From: David Lewis (Parts of Classes [1991], 1.2)
     A reaction: Lewis is showing the mereological character of sets, but this is a key distinction in basic set theory. When the members of members are themselves members, the set is said to be 'transitive'.
'Forcing' can produce new models of ZFC from old models [Maddy]
     Full Idea: Cohen's method of 'forcing' produces a new model of ZFC from an old model by appending a carefully chosen 'generic' set.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.4)
An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order [Priest,G]
     Full Idea: An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets [Priest,G]
     Full Idea: A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'set' is a collection of objects [Priest,G]
     Full Idea: A 'set' is a collection of objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
A 'member' of a set is one of the objects in the set [Priest,G]
     Full Idea: A 'member' of a set is one of the objects in the set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
A 'singleton' is a set with only one member [Priest,G]
     Full Idea: A 'singleton' is a set with only one member.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
The 'empty set' or 'null set' has no members [Priest,G]
     Full Idea: The 'empty set' or 'null set' is a set with no members.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A set is a 'subset' of another set if all of its members are in that set [Priest,G]
     Full Idea: A set is a 'subset' of another set if all of its members are in that set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
A 'proper subset' is smaller than the containing set [Priest,G]
     Full Idea: A set is a 'proper subset' of another set if some things in the large set are not in the smaller set
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
The 'union' of two sets is a set containing all the things in either of the sets [Priest,G]
     Full Idea: The 'union' of two sets is a set containing all the things in either of the sets
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'intersection' of two sets is a set of the things that are in both sets [Priest,G]
     Full Idea: The 'intersection' of two sets is a set containing the things that are in both sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'relative complement' is things in the second set not in the first [Priest,G]
     Full Idea: The 'relative complement' of one set with respect to another is the things in the second set that aren't in the first.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'induction clause' says complex formulas retain the properties of their basic formulas [Priest,G]
     Full Idea: The 'induction clause' says that whenever one constructs more complex formulas out of formulas that have the property P, the resulting formulas will also have that property.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.2)
The 'Cartesian Product' of two sets relates them by pairing every element with every element [Zalabardo]
     Full Idea: The 'Cartesian Product' of two sets, written A x B, is the relation which pairs every element of A with every element of B. So A x B = { | x ∈ A and y ∈ B}.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.6)
A 'partial ordering' is reflexive, antisymmetric and transitive [Zalabardo]
     Full Idea: A binary relation in a set is a 'partial ordering' just in case it is reflexive, antisymmetric and transitive.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.6)
The 'power set' of A is all the subsets of A [George/Velleman]
     Full Idea: The 'power set' of A is all the subsets of A. P(A) = {B : B ⊆ A}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman]
     Full Idea: The 'Cartesian Product' of any two sets A and B is the set of all ordered pairs <a, b> in which a ∈ A and b ∈ B, and it is denoted as A x B.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman]
     Full Idea: The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}}. The existence of this set is guaranteed by three applications of the Axiom of Pairing.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: See Idea 10100 for the Axiom of Pairing.
A set is 'well-ordered' if every subset has a first element [Clegg]
     Full Idea: For a set to be 'well-ordered' it is required that every subset of the set has a first element.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
     Full Idea: A member m of M is an 'upper bound' of a subset N of M if m is not less than any member of N. A member m of M is a 'least upper bound' of N if m is an upper bound of N such that if l is any other upper bound of N, then m is less than l.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: [if you don't follow that, you'll have to keep rereading it till you do]
A 'proper subset' of A contains only members of A, but not all of them [Friend]
     Full Idea: A 'subset' of A is a set containing only members of A, and a 'proper subset' is one that does not contain all the members of A. Note that the empty set is a subset of every set, but it is not a member of every set.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Is it the same empty set in each case? 'No pens' is a subset of 'pens', but is it a subset of 'paper'? Idea 8219 should be borne in mind when discussing such things, though I am not saying I agree with it.
A 'powerset' is all the subsets of a set [Friend]
     Full Idea: The 'powerset' of a set is a set made up of all the subsets of a set. For example, the powerset of {3,7,9} is {null, {3}, {7}, {9}, {3,7}, {3,9}, {7,9}, {3,7,9}}. Taking the powerset of an infinite set gets us from one infinite cardinality to the next.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Note that the null (empty) set occurs once, but not in the combinations. I begin to have queasy sympathies with the constructivist view of mathematics at this point, since no one has the time, space or energy to 'take' an infinite powerset.