structure for 'Mathematics'    |     alphabetical list of themes    |     unexpand these ideas

6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism

[the view that mathematics is rooted in experience]

36 ideas
Ten sheep and ten dogs are the same numerically, but it is not the same ten [Aristotle]
     Full Idea: If there are ten sheep and ten dogs, the number is the same (because it does not differ by a numerical difference), but it is not the same ten (because the objects it is predicated of are different - dogs in one instance, horses in the other).
     From: Aristotle (Physics [c.337 BCE], 224a2-14)
     A reaction: Mega! Abstract objects are unique, and can't be 'added' to themselves. I think we need 'units' here, because 2+2 adds four units, so each 2 refers to something different. '2' must refer to something other than itself.
Every simple idea we ever have brings the idea of unity along with it [Locke]
     Full Idea: Amongst all the ideas we have… there is none more simple, than that of unity, or one… every idea in our understanding, every thought in our minds, brings this idea along with it.
     From: John Locke (Essay Conc Human Understanding (2nd Ed) [1694], 2.16.01)
     A reaction: If every idea we think of necessarily brings another idea along with it, that makes you suspect that the accompanying idea is innate. If I derive the concept of the sun from experience, do I also derive the idea that my concept is a unity?
Reason assists experience in discovering laws, and in measuring their application [Hume]
     Full Idea: Abstract reasonings are employed, either to assist experience in the discovery of natural laws, or to determine their influence in particular instances, where it depends upon any precise degree of distance or quantity.
     From: David Hume (Enquiry Conc Human Understanding [1748], IV.I.27)
Maths is a priori, but without its relation to empirical objects it is meaningless [Kant]
     Full Idea: Although all these principles .....are generated in the mind completely a priori, they would still not signify anything at all if we could not always exhibit their significance in appearances (empirical objects).
     From: Immanuel Kant (Critique of Pure Reason [1781], B299/A240)
     A reaction: This is the subtle Kantian move that we all have to take seriously when we try to assert 'realism' about anything. Our drive for meaning creates our world for us?
Mill says logic and maths is induction based on a very large number of instances [Mill, by Ayer]
     Full Idea: Mill maintained that the truths of logic and mathematics are not necessary or certain, by saying these propositions are inductive generalisations based on an extremely large number of instances.
     From: report of John Stuart Mill (System of Logic [1843]) by A.J. Ayer - Language,Truth and Logic Ch.4
     A reaction: Ayer asserts that they are necessary (but only because they are tautological). I like the idea that maths is the 'science of patterns', but that might lead from an empirical start to a rationalist belief in a priori synthetic truths.
If two black and two white objects in practice produced five, what colour is the fifth one? [Lewis,CI on Mill]
     Full Idea: If Mill has a demon who, every time two things are brought together with two other things, always introduces a fifth, then if two black marbles and two white ones are put in an urn, the demon could choose his color, but there would be more of one colour.
     From: comment on John Stuart Mill (System of Logic [1843]) by C.I. Lewis - A Pragmatic Conception of the A Priori p.367
     A reaction: Nice to see philosophers fighting back against demons. This is a lovely argument against the absurdity of thinking that experience could ever controvert a priori knowledge (though Lewis is no great fan of the latter).
Mill mistakes particular applications as integral to arithmetic, instead of general patterns [Dummett on Mill]
     Full Idea: Mill's mistake is taking particular applications as integral to the sense of arithmetical propositions. But what is integral to arithmetic is the general principle that explains its applicability, and determines the pattern of particular applications.
     From: comment on John Stuart Mill (System of Logic [1843], 2.6) by Michael Dummett - Frege philosophy of mathematics Ch.20
     A reaction: [Dummett is summarising Frege's view] Sounds like a tidy objection, but you still have to connect the general principles and patterns to the physical world. 'Structure' could be the magic word to achieve this.
Things possess the properties of numbers, as quantity, and as countable parts [Mill]
     Full Idea: All things possess quantity; consist of parts which can be numbered; and in that character possess all the properties which are called properties of numbers.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: Here Mill is skating on the very thinnest of ice, and I find myself reluctantly siding with Frege. It is a very optimistic empiricist who hopes to find the numbers actually occurring as properties of experienced objects. A pack of cards, for example.
There are no such things as numbers in the abstract [Mill]
     Full Idea: There are no such things as numbers in the abstract.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: Depends. Would we want to say that 'horses don't exist' (although each individual horse does exist)? It sounds odd to say of an idea that it doesn't exist, when you are currently thinking about it. I am, however, sympathetic to Mill.
Numbers have generalised application to entities (such as bodies or sounds) [Mill]
     Full Idea: 'Ten' must mean ten bodies, or ten sounds, or ten beatings of the pulse. But though numbers must be numbers of something, they may be numbers of anything.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: Mill always prefers things in close proximity, in space or time. 'I've had ten headaches in the last year'. 'There are ten reasons for doubting p'. His second point puts him very close to Aristotle in his view.
Different parcels made from three pebbles produce different actual sensations [Mill]
     Full Idea: Three pebbles make different sense impressions in one parcel or in two. That the same pebbles by an alteration of place and arrangement may be made to produce either sensation is not the identical proposition.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: [compressed] Not quite clear, but Mill seems to be adamant that we really must experience the separation, and not just think what 'may' happen, so Frege is right that Mill is lucky that everything is not 'nailed down'.
'2 pebbles and 1 pebble' and '3 pebbles' name the same aggregation, but different facts [Mill]
     Full Idea: The expressions '2 pebbles and 1 pebble' and '3 pebbles' stand for the same aggregation of objects, but do not stand for the same physical fact. They name the same objects in different states, 'denoting' the same things, with different 'connotations'.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: Nothing in this would convert me from the analytic view to the empirical view of simple arithmetic, if I were that way inclined. Personally I think of three pebbles as 4 minus 1, because I am haunted by the thought of a missing stone.
3=2+1 presupposes collections of objects ('Threes'), which may be divided thus [Mill]
     Full Idea: 'Three is two and one' presupposes that collections of objects exist, which while they impress the senses thus, ¶¶¶, may be separated into two parts, thus, ¶¶ ¶. This being granted, we term all such parcels Threes.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: Mill is clearly in trouble here because he sticks to simple arithmetic. He must deal with parcels too big for humans to count, and parcels so big that they could not naturally exist, and that is before you even reach infinite parcels.
We can't easily distinguish 102 horses from 103, but we could arrange them to make it obvious [Mill]
     Full Idea: 102 horses are not as easily distinguished from 103 as two are from three, yet the horses may be so placed that a difference will be perceptible.
     From: John Stuart Mill (System of Logic [1843], 3.24.5)
     A reaction: More trouble for Mill. We are now moving from the claim that we actually perceive numbers to the claim that we could if we arranged things right. But we would still only see which group of horses was bigger by one, not how many horses there were.
Numbers denote physical properties of physical phenomena [Mill]
     Full Idea: The fact asserted in the definition of a number is a physical fact. Each of the numbers two, three, four denotes physical phenomena, and connotes a physical property of those phenomena. Two denotes all pairs of things, and twelve all dozens.
     From: John Stuart Mill (System of Logic [1843], 3.24.5)
     A reaction: The least plausible part of Mill's thesis. Is the fact that a pair of things is fewer than five things also a property? You see two boots, or you see a pair of boots, depending partly on you. Is pure two a visible property? Courage and an onion?
Arithmetical results give a mode of formation of a given number [Mill]
     Full Idea: Every statement of the result of an arithmetical operation is a statement of one of the modes of formation of a given number.
     From: John Stuart Mill (System of Logic [1843], 3.24.5)
     A reaction: Although Mill sticks cautiously to very simple arithmetic, inviting empirical accounts of much higher mathematics, I think the phrase 'modes of formation' of numbers is very helpful. It could take us either into structuralism, or into constructivism.
12 is the cube of 1728 means pebbles can be aggregated a certain way [Mill]
     Full Idea: When we say 12 is the cube of 1728, we affirm that if we had sufficient pebbles, we put them into parcels or aggregates called twelves, and put those twelves into similar collections, and make twelve of these largests parcels, we have the aggregate 1728.
     From: John Stuart Mill (System of Logic [1843], 3.24.5)
     A reaction: There is always hidden modal thinking in Mill's proposals, despite his longing to stick to actual experience. Imagination actually plays a much bigger role in his theory than sense experience does.
Numbers must be of something; they don't exist as abstractions [Mill]
     Full Idea: All numbers must be numbers of something: there are no such things as numbers in the abstract.
     From: John Stuart Mill (System of Logic [1843], p.245?), quoted by Stewart Shapiro - Thinking About Mathematics 4.3
     A reaction: This shows why the concept of 'abstraction' is such a deep problem. Numbers can't be properties of objects, because two boots can become one boot without changing the surviving boot. But why should abstractions have to 'exist'?
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
     Full Idea: Cantor calls mathematics an empirical science in so far as it begins with consideration of things in the external world; on his view, number originates only by abstraction from objects.
     From: report of George Cantor (works [1880]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §21
     A reaction: Frege utterly opposed this view, and he seems to have won the day, but I am rather thrilled to find the great Cantor endorsing my own intuitions on the subject. The difficulty is to explain 'abstraction'.
Arithmetic was probably inferred from relationships between physical objects [Russell]
     Full Idea: When 2 + 2 =4 was first discovered, it was probably inferred from the case of sheep and other concrete cases.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.272)
Basic mathematics is related to abstract elements of our empirical ideas [Gödel]
     Full Idea: Evidently the 'given' underlying mathematics is closely related to the abstract elements contained in our empirical ideas.
     From: Kurt Gödel (What is Cantor's Continuum Problem? [1964], Suppl)
     A reaction: Yes! The great modern mathematical platonist says something with which I can agree. He goes on to hint at a platonic view of the structure of the empirical world, but we'll let that pass.
Quine blurs the difference between knowledge of arithmetic and of physics [Jenkins on Quine]
     Full Idea: Quine cannot deal with the intuition that there is a difference in kind between our knowledge of arithmetic and our knowledge of physics.
     From: comment on Willard Quine (Two Dogmas of Empiricism [1953]) by Carrie Jenkins - Grounding Concepts 7.5
     A reaction: The endorses this criticism, which she says is widespread. I'm not convinced that there is a clear notion of 'difference in kind' here. Jenkins gets arithmetic from concepts and physics from the world. Is that a sharp distinction?
Maybe mathematics is empirical in that we could try to change it [Putnam]
     Full Idea: Mathematics might be 'empirical' in the sense that one is allowed to try to put alternatives into the field.
     From: Hilary Putnam (Mathematics without Foundations [1967], p.303)
     A reaction: He admits that change is highly unlikely. It take hardcore Millian arithmetic to be only changeable if pebbles start behaving very differently with regard to their quantities, which appears to be almost inconceivable.
It is unfashionable, but most mathematical intuitions come from nature [Putnam]
     Full Idea: Experience with nature is undoubtedly the source of our most basic 'mathematical intuitions', even if it is unfashionable to say so.
     From: Hilary Putnam (Models and Reality [1977], p.424)
     A reaction: Correct. I find it quite bewildering how Frege has managed to so discredit all empirical and psychological approaches to mathematics that it has become a heresy to say such things.
Rat behaviour reveals a considerable ability to count [Goldman]
     Full Idea: Rats can determine the number of times they have pressed a lever up to at least twenty-four presses,…and can consistently turn down the fifth tunnel on the left in a maze.
     From: Alvin I. Goldman (Phil Applications of Cognitive Science [1993], p.58)
     A reaction: This seems to encourage an empirical view of maths (pattern recognition?) rather than a Platonic one. Or numbers are innate in rat brains?
Mathematical knowledge arises from basic perception [Kitcher]
     Full Idea: Mathematical knowledge arises from rudimentary knowledge acquired by perception.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], Intro)
     A reaction: This is an empiricist manifesto, which asserts his allegiance to Mill, and he gives a sophisticated account of how higher mathematics can be accounted for in this way. Well, he tries to.
My constructivism is mathematics as an idealization of collecting and ordering objects [Kitcher]
     Full Idea: The constructivist position I defend claims that mathematics is an idealized science of operations which can be performed on objects in our environment. It offers an idealized description of operations of collecting and ordering.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], Intro)
     A reaction: I think this is right. What is missing from Kitcher's account (and every other account I've met) is what is meant by 'idealization'. How do you go about idealising something? Hence my interest in the psychology of abstraction.
We derive limited mathematics from ordinary things, and erect powerful theories on their basis [Kitcher]
     Full Idea: I propose that a very limited amount of our mathematical knowledge can be obtained by observations and manipulations of ordinary things. Upon this small base we erect the powerful general theories of modern mathematics.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 05.2)
     A reaction: I agree. The three related processes that take us from the experiential base of mathematics to its lofty heights are generalisation, idealisation and abstraction.
The defenders of complex numbers had to show that they could be expressed in physical terms [Kitcher]
     Full Idea: Proponents of complex numbers had ultimately to argue that the new operations shared with the original paradigms a susceptibility to construal in physical terms. The geometrical models of complex numbers answered to this need.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 07.5)
     A reaction: [A nice example of the verbose ideas which this website aims to express in plain English!] The interest is not that they had to be described physically (which may pander to an uninformed audience), but that they could be so described.
We can't use empiricism to dismiss numbers, if numbers are our main evidence against empiricism [Wright,C]
     Full Idea: We may not be able to settle whether some general form of empiricism is correct independently of natural numbers. It might be precisely our grasp of the abstract sortal, natural number, which shows the hypothesis of empiricism to be wrong.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: A nice turning of the tables. In the end only coherence decides these things. You may accept numbers and reject empiricism, and then find you have opened the floodgates for abstracta. Excessive floodgates, or blockages of healthy streams?
The indispensability argument shows that nature is non-numerical, not the denial of numbers [Fine,K]
     Full Idea: Arguments such as the dispensability argument are attempting to show something about the essentially non-numerical character of physical reality, rather than something about the nature or non-existence of the numbers themselves.
     From: Kit Fine (The Question of Ontology [2009], p.160)
     A reaction: This is aimed at Hartry Field. If Quine was right, and we only believe in numbers because of our science, and then Field shows our science doesn't need it, then Fine would be wrong. Quine must be wrong, as well as Field.
A stone is a position in some pattern, and can be viewed as an object, or as a location [Shapiro]
     Full Idea: For each stone, there is at least one pattern such that the stone is a position in that pattern. The stone can be treated in terms of places-are-objects, or places-are-offices, to be filled with objects drawn from another ontology.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 8.4)
     A reaction: I believe this is the story J.S. Mill had in mind. His view was that the structures move off into abstraction, but it is only at the empirical and physical level that we can possibly learn the structures.
We know mind-independent mathematical truths through sets, which rest on experience [Maddy, by Jenkins]
     Full Idea: Maddy proposes that we can know (some) mind-independent mathematical truths through knowing about sets, and that we can obtain knowledge of sets through experience.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Carrie Jenkins - Grounding Concepts 6.5
     A reaction: Maddy has since backed off from this, and now tries to merely defend 'objectivity' about sets (2011:114). My amateurish view is that she is overrating the importance of sets, which merely model mathematics. Look at category theory.
Mathematics is relations between properties we abstract from experience [Mares]
     Full Idea: Aristotelians treat mathematical facts as relations between properties. These properties, moreover, are abstracted from our experience of things. ...This view finds a natural companion in structuralism.
     From: Edwin D. Mares (A Priori [2011], 11.7)
     A reaction: This is the view of mathematics that I personally favour. The view that we abstract 'five' from a group of five pebbles is too simplistic, but this is the right general approach.
Arithmetic concepts are indispensable because they accurately map the world [Jenkins]
     Full Idea: The indispensability of arithmetical concepts is evidence that they do in fact accurately represent features of the independent world.
     From: Carrie Jenkins (Grounding Concepts [2008], Intro)
     A reaction: This seems to me to be by far the best account of the matter. So why is the world so arithmetical? Dunno, mate; ask someone else.
Senses produce concepts that map the world, and arithmetic is known through these concepts [Jenkins]
     Full Idea: I propose that arithmetical truths are known through an examination of our own arithmetical concepts; that basic arithmetical concepts map the arithmetical structure of the world; that the map obtains in virtue of our normal sensory apparatus.
     From: Carrie Jenkins (Grounding Concepts [2008], Pref)
     A reaction: She defends the nice but unusual position that arithmetical knowledge is both a priori and empirical (so that those two notions are not, as usually thought, opposed). I am a big Carrie Jenkins fan.