structure for 'Theory of Logic'    |     alphabetical list of themes    |     unexpand these ideas

5. Theory of Logic / K. Features of Logics / 4. Completeness

[all the truths of a system are formally deducible]

14 ideas
A system is 'weakly' complete if all wffs are derivable, and 'strongly' if theses are maximised [Hughes/Cresswell]
     Full Idea: To say that an axiom system is 'weakly complete' is to say that every valid wff of the system is derivable as a thesis. ..The system is 'strongly complete' if it cannot have any more theses than it has without falling into inconsistency.
     From: GE Hughes/M Cresswell (An Introduction to Modal Logic [1968], Ch.1)
     A reaction: [They go on to say that Propositional Logic is strongly complete, but Modal Logic is not]
Soundness and completeness proofs test the theory of meaning, rather than the logic theory [Dummett]
     Full Idea: A proof of soundess or completeness is a test, not so much of the logical theory to which it applies, but of the theory of meaning which underlies the semantics.
     From: Michael Dummett (The Justification of Deduction [1973], p.310)
     A reaction: These two types of proof concern how the syntax and the semantics match up, so this claim sounds plausible, though I tend to think of them as more like roadworthiness tests for logic, checking how well they function.
A proof theory is 'complete' if semantically valid inferences entail proof-theoretic validity [Enderton]
     Full Idea: If every semantically valid inference is proof-theoretically valid (so that |= entails |-), the proof-theory is said to be 'complete'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.7)
Completeness and compactness together give axiomatizability [Tharp]
     Full Idea: Putting completeness and compactness together, one has axiomatizability.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §1)
Weak completeness: if it is valid, it is provable. Strong: it is provable from a set of sentences [Boolos]
     Full Idea: A weak completeness theorem shows that a sentence is provable whenever it is valid; a strong theorem, that a sentence is provable from a set of sentences whenever it is a logical consequence of the set.
     From: George Boolos (On Second-Order Logic [1975], p.52)
     A reaction: So the weak version says |- φ → |= φ, and the strong versions says Γ |- φ → Γ |= φ. Presumably it is stronger if it can specify the source of the inference.
A theory is 'negation complete' if one of its sentences or its negation can always be proved [Smith,P]
     Full Idea: Logicians say that a theory T is '(negation) complete' if, for every sentence φ in the language of the theory, either φ or ¬φ is deducible in T's proof system. If this were the case, then truth could be equated with provability.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 01.1)
     A reaction: The word 'negation' seems to be a recent addition to the concept. Presumable it might be the case that φ can always be proved, but not ¬φ.
A theory is 'negation complete' if it proves all sentences or their negation [Smith,P]
     Full Idea: A theory is 'negation complete' if it decides every sentence of its language (either the sentence, or its negation).
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
'Complete' applies both to whole logics, and to theories within them [Smith,P]
     Full Idea: There is an annoying double-use of 'complete': a logic may be semantically complete, but there may be an incomplete theory expressed in it.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
We can live well without completeness in logic [Shapiro]
     Full Idea: We can live without completeness in logic, and live well.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: This is the kind of heady suggestion that American philosophers love to make. Sounds OK to me, though. Our ability to draw good inferences should be expected to outrun our ability to actually prove them. Completeness is for wimps.
In a complete logic you can avoid axiomatic proofs, by using models to show consequences [Sider]
     Full Idea: You can establish facts of the form Γ|-φ while avoiding the agonies of axiomatic proofs by reasoning directly about models to conclusions about semantic consequence, and then citing completeness.
     From: Theodore Sider (Logic for Philosophy [2010], 4.5)
     A reaction: You cite completeness by saying that anything which you have shown to be a semantic consequence must therefore be provable (in some way).
A 'complete' theory contains either any sentence or its negation [George/Velleman]
     Full Idea: If there is a sentence such that neither the sentence nor its negation are theorems of a theory, then the theory is 'incomplete'. Otherwise it is 'complete'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: Interesting questions are raised about undecidable sentences, irrelevant sentences, unknown sentences....
If a sentence holds in every model of a theory, then it is logically derivable from the theory [Feferman/Feferman]
     Full Idea: Completeness is when, if a sentences holds in every model of a theory, then it is logically derivable from that theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
If a theory is complete, only a more powerful language can strengthen it [Wolf,RS]
     Full Idea: It is valuable to know that a theory is complete, because then we know it cannot be strengthened without passing to a more powerful language.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.5)
Completeness can always be achieved by cunning model-design [Rossberg]
     Full Idea: All that should be required to get a semantics relative to which a given deductive system is complete is a sufficiently cunning model-theorist.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §5)