structure for 'Theory of Logic'    |     alphabetical list of themes    |     unexpand these ideas

5. Theory of Logic / K. Features of Logics / 5. Incompleteness

[some truths of a system evade formal proof]

10 ideas
We can assign a characteristic number to every single object [Leibniz]
     Full Idea: The true principle is that we can assign to every object its determined characteristic number.
     From: Gottfried Leibniz (Towards a Universal Characteristic [1677], p.18)
     A reaction: I add this as a predecessor of Gödel numbering. It is part of Leibniz's huge plan for a Universal Characteristic, to map reality numerically, and then calculate the truths about it. Gödel seems to allow metaphysics to be done mathematically.
Gödel's First Theorem sabotages logicism, and the Second sabotages Hilbert's Programme [Smith,P on Gödel]
     Full Idea: Where Gödel's First Theorem sabotages logicist ambitions, the Second Theorem sabotages Hilbert's Programme.
     From: comment on Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 36
     A reaction: Neo-logicism (Crispin Wright etc.) has a strategy for evading the First Theorem.
The undecidable sentence can be decided at a 'higher' level in the system [Gödel]
     Full Idea: My undecidable arithmetical sentence ...is not at all absolutely undecidable; rather, one can always pass to 'higher' systems in which the sentence in question is decidable.
     From: Kurt Gödel (On Formally Undecidable Propositions [1931]), quoted by Peter Koellner - On the Question of Absolute Undecidability 1.1
     A reaction: [a 1931 MS] He says the reals are 'higher' than the naturals, and the axioms of set theory are higher still. The addition of a truth predicate is part of what makes the sentence become decidable.
Gödel's Theorems did not refute the claim that all good mathematical questions have answers [Gödel, by Koellner]
     Full Idea: Gödel was quick to point out that his original incompleteness theorems did not produce instances of absolute undecidability and hence did not undermine Hilbert's conviction that for every precise mathematical question there is a discoverable answer.
     From: report of Kurt Gödel (works [1930]) by Peter Koellner - On the Question of Absolute Undecidability Intro
     A reaction: The normal simplistic view among philosophes is that Gödel did indeed decisively refute the optimistic claims of Hilbert. Roughly, whether Hilbert is right depends on which axioms of set theory you adopt.
If completeness fails there is no algorithm to list the valid formulas [Tharp]
     Full Idea: In general, if completeness fails there is no algorithm to list the valid formulas.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: I.e. the theory is not effectively enumerable.
Two routes to Incompleteness: semantics of sound/expressible, or syntax of consistency/proof [Smith,P]
     Full Idea: There are two routes to Incompleteness results. One goes via the semantic assumption that we are dealing with sound theories, using a result about what they can express. The other uses the syntactic notion of consistency, with stronger notions of proof.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 18.1)
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
The first incompleteness theorem means that consistency does not entail soundness [Horsten]
     Full Idea: It is a lesson of the first incompleteness theorem that consistency does not entail soundness. If we add the negation of the gödel sentence for PA as an extra axiom to PA, the result is consistent. This negation is false, so the theory is unsound.
     From: Leon Horsten (The Tarskian Turn [2011], 04.3)
A deductive system is only incomplete with respect to a formal semantics [Rossberg]
     Full Idea: No deductive system is semantically incomplete in and of itself; rather a deductive system is incomplete with respect to a specified formal semantics.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This important point indicates that a system might be complete with one semantics and incomplete with another. E.g. second-order logic can be made complete by employing a 'Henkin semantics'.
Axioms are ω-incomplete if the instances are all derivable, but the universal quantification isn't [Engelbretsen/Sayward]
     Full Idea: A set of axioms is said to be ω-incomplete if, for some universal quantification, each of its instances is derivable from those axioms but the quantification is not thus derivable.
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], 7)