structure for 'Theory of Logic'    |     alphabetical list of themes    |     expand these ideas

5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction

[evaluating as True after all truth assignments are made]

12 ideas
A sentence is satisfied when we can assert the sentence when the variables are assigned [Tarski]
Satisfaction is the easiest semantical concept to define, and the others will reduce to it [Tarski]
'Satisfaction' is a generalised form of reference [Davidson]
A truth assignment to the components of a wff 'satisfy' it if the wff is then True [Enderton]
|= should be read as 'is a model for' or 'satisfies' [Hodges,W]
An open sentence is satisfied if the object possess that property [Kirkham]
'Satisfaction' is a function from models, assignments, and formulas to {true,false} [Shapiro]
A sentence is 'satisfiable' if it has a model [Shapiro]
Validity (for truth) and demonstrability (for proof) have correlates in satisfiability and consistency [Burgess]
A sentence-set is 'satisfiable' if at least one truth-assignment makes them all true [Zalabardo]
Some formulas are 'satisfiable' if there is a structure and interpretation that makes them true [Zalabardo]
Satisfaction is a primitive notion, and very liable to semantical paradoxes [Horsten]