structure for 'Mathematics'    |     alphabetical list of themes    |     unexpand these ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers

[numbers relating to position rather than total]

30 ideas
If we just say one, one, one, one, we don't know where we have got to [Hobbes]
     Full Idea: By saying one, one, one, one, and so forward, we know not what number we are at beyond two or three.
     From: Thomas Hobbes (De Corpore (Elements, First Section) [1655], 2.12.05)
     A reaction: This makes ordinals sound like meta-numbers.
Dedekind's ordinals are just members of any progression whatever [Dedekind, by Russell]
     Full Idea: Dedekind's ordinals are not essentially either ordinals or cardinals, but the members of any progression whatever.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Bertrand Russell - The Principles of Mathematics §243
     A reaction: This is part of Russell's objection to Dedekind's structuralism. The question is always why these beautiful structures should actually be considered as numbers. I say, unlike Russell, that the connection to counting is crucial.
Ordinals are generated by endless succession, followed by a limit ordinal [Cantor, by Lavine]
     Full Idea: Ordinal numbers are generated by two principles: each ordinal has an immediate successor, and each unending sequence has an ordinal number as its limit (that is, an ordinal that is next after such a sequence).
     From: report of George Cantor (Grundlagen (Foundations of Theory of Manifolds) [1883]) by Shaughan Lavine - Understanding the Infinite III.4
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
     Full Idea: Cantor's work revealed that the notion of an ordinal number is more fundamental than that of a cardinal number.
     From: report of George Cantor (works [1880]) by Michael Dummett - Frege philosophy of mathematics Ch.23
     A reaction: Dummett makes it sound like a proof, which I find hard to believe. Is the notion that I have 'more' sheep than you logically prior to how many sheep we have? If I have one more, that implies the next number, whatever that number may be. Hm.
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
     Full Idea: Cantor introduced the distinction between cardinal and ordinal numbers.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind Intro
     A reaction: This seems remarkably late for what looks like a very significant clarification. The two concepts coincide in finite cases, but come apart in infinite cases (Tait p.58).
We cannot define numbers from the idea of a series, because numbers must precede that [Frege]
     Full Idea: We cannot define number by the generalized concept of a series. Positions in the series cannot be the basis on which we distinguish the objects, since they must already have been distinguished somehow or other, for us to arrange them in a series.
     From: Gottlob Frege (Grundlagen der Arithmetik (Foundations) [1884], §42)
     A reaction: You can arrange things in a line without the use of numbers. You need prior mastery of counting, though, to say where an item comes in the line. And yet... why shouldn't you define counting by the use of some original primitive line? Numbers map onto it.
Transfinite ordinals don't obey commutativity, so their arithmetic is quite different from basic arithmetic [Russell]
     Full Idea: Unlike the transfinite cardinals, the transfinite ordinals do not obey the commutative law, and their arithmetic is therefore quite different from elementary arithmetic.
     From: Bertrand Russell (The Principles of Mathematics [1903], §290)
Ordinals are types of series of terms in a row, rather than the 'nth' instance [Russell]
     Full Idea: The finite ordinals may be conceived as types of series; ..the ordinal number may be taken as 'n terms in a row'; this is distinct from the 'nth', and logically prior to it.
     From: Bertrand Russell (The Principles of Mathematics [1903], §290)
     A reaction: Worth nothing, because the popular and traditional use of 'ordinal' (as in learning a foreign language) is to mean the nth instance of something, rather than a whole series.
Ordinals are defined through mathematical induction [Russell]
     Full Idea: The ordinal numbers are defined by some relation to mathematical induction.
     From: Bertrand Russell (The Principles of Mathematics [1903], §290)
For Cantor ordinals are types of order, not numbers [Russell]
     Full Idea: In his most recent article Cantor speaks of ordinals as types of order, not as numbers.
     From: Bertrand Russell (The Principles of Mathematics [1903], §298)
     A reaction: Russell likes this because it supports his own view of ordinals as classes of serial relations. It has become orthodoxy to refer to heaps of things as 'numbers' when the people who introduced them may not have seen them that way.
In ZF, the Burali-Forti Paradox proves that there is no set of all ordinals [Zermelo, by Hart,WD]
     Full Idea: In Zermelo's set theory, the Burali-Forti Paradox becomes a proof that there is no set of all ordinals (so 'is an ordinal' has no extension).
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by William D. Hart - The Evolution of Logic 3
A von Neumann ordinal is a transitive set with transitive elements [Neumann, by Badiou]
     Full Idea: In Von Neumann's definition an ordinal is a transitive set in which all of the elements are transitive.
     From: report of John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Alain Badiou - Briefings on Existence 11
Von Neumann defined ordinals as the set of all smaller ordinals [Neumann, by Poundstone]
     Full Idea: At age twenty, Von Neumann devised the formal definition of ordinal numbers that is used today: an ordinal number is the set of all smaller ordinal numbers.
     From: report of John von Neumann (works [1935]) by William Poundstone - Prisoner's Dilemma 02 'Sturm'
     A reaction: I take this to be an example of an impredicative definition (not predicating something new), because it uses 'ordinal number' in the definition of ordinal number. I'm guessing the null set gets us started.
Any progression will do nicely for numbers; they can all then be used to measure multiplicity [Quine]
     Full Idea: The condition on an explication of number can be put succinctly: any progression will do nicely. Russell once held that one must also be able to measure multiplicity, but this was a mistake; any progression can be fitted to that further condition.
     From: Willard Quine (Word and Object [1960], §54)
     A reaction: [compressed] This is the strongest possible statement that the numbers are the ordinals, and the Peano Axioms will define them. The Fregean view that cardinality comes first is redundant.
The less-than relation < well-orders, and partially orders, and totally orders the ordinal numbers [Hart,WD]
     Full Idea: We can show (using the axiom of choice) that the less-than relation, <, well-orders the ordinals, ...and that it partially orders the ordinals, ...and that it totally orders the ordinals.
     From: William D. Hart (The Evolution of Logic [2010], 1)
There are at least as many infinite cardinals as transfinite ordinals (because they will map) [Hart,WD]
     Full Idea: Since we can map the transfinite ordinals one-one into the infinite cardinals, there are at least as many infinite cardinals as transfinite ordinals.
     From: William D. Hart (The Evolution of Logic [2010], 1)
The axiom of infinity with separation gives a least limit ordinal ω [Hart,WD]
     Full Idea: The axiom of infinity with separation yields a least limit ordinal, which is called ω.
     From: William D. Hart (The Evolution of Logic [2010], 3)
Von Neumann's ordinals generalise into the transfinite better, because Zermelo's ω is a singleton [Hart,WD]
     Full Idea: It is easier to generalize von Neumann's finite ordinals into the transfinite. All Zermelo's nonzero finite ordinals are singletons, but if ω were a singleton it is hard to see how if could fail to be the successor of its member and so not a limit.
     From: William D. Hart (The Evolution of Logic [2010], 3)
Natural numbers are the finite ordinals, and integers are equivalence classes of pairs of finite ordinals [Shapiro]
     Full Idea: By convention, the natural numbers are the finite ordinals, the integers are certain equivalence classes of pairs of finite ordinals, etc.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.3)
Beyond infinity cardinals and ordinals can come apart [Clegg]
     Full Idea: With ordinary finite numbers ordinals and cardinals are in effect the same, but beyond infinity it is possible for two sets to have the same cardinality but different ordinals.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
An ordinal number is defined by the set that comes before it [Clegg]
     Full Idea: You can think of an ordinal number as being defined by the set that comes before it, so, in the non-negative integers, ordinal 5 is defined as {0, 1, 2, 3, 4}.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
An ordinal is an equivalence class of well-orderings, or a transitive set whose members are transitive [Wolf,RS]
     Full Idea: Less theoretically, an ordinal is an equivalence class of well-orderings. Formally, we say a set is 'transitive' if every member of it is a subset of it, and an ordinal is a transitive set, all of whose members are transitive.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.4)
     A reaction: He glosses 'transitive' as 'every member of a member of it is a member of it'. So it's membership all the way down. This is the von Neumann rather than the Zermelo approach (which is based on singletons).
The theory of the transfinite needs the ordinal numbers [Hossack]
     Full Idea: The theory of the transfinite needs the ordinal numbers.
     From: Keith Hossack (Plurals and Complexes [2000], 8)
Members of ordinals are ordinals, and also subsets of ordinals [Walicki]
     Full Idea: Every member of an ordinal is itself an ordinal, and every ordinal is a transitive set (its members are also its subsets; a member of a member of an ordinal is also a member of the ordinal).
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Ordinals are transitive sets of transitive sets; or transitive sets totally ordered by inclusion [Walicki]
     Full Idea: An ordinal can be defined as a transitive set of transitive sets, or else, as a transitive set totally ordered by set inclusion.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Ordinals are the empty set, union with the singleton, and any arbitrary union of ordinals [Walicki]
     Full Idea: The collection of ordinals is defined inductively: Basis: the empty set is an ordinal; Ind: for an ordinal x, the union with its singleton is also an ordinal; and any arbitrary (possibly infinite) union of ordinals is an ordinal.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: [symbolism translated into English] Walicki says they are called 'ordinal numbers', but are in fact a set.
The union of finite ordinals is the first 'limit ordinal'; 2ω is the second... [Walicki]
     Full Idea: We can form infinite ordinals by taking unions of ordinals. We can thus form 'limit ordinals', which have no immediate predecessor. ω is the first (the union of all finite ordinals), ω + ω = sω is second, 3ω the third....
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Two infinite ordinals can represent a single infinite cardinal [Walicki]
     Full Idea: There may be several ordinals for the same cardinality. ...Two ordinals can represent different ways of well-ordering the same number (aleph-0) of elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: This only applies to infinite ordinals and cardinals. For the finite, the two coincide. In infinite arithmetic the rules are different.
Ordinal numbers represent order relations [Colyvan]
     Full Idea: Ordinal numbers represent order relations.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.2.3 n17)
Maybe an ordinal is a property of isomorphic well-ordered sets, and not itself a set [Rumfitt]
     Full Idea: Menzel proposes that an ordinal is something isomorphic well-ordered sets have in common, so while an ordinal can be represented as a set, it is not itself a set, but a 'property' of well-ordered sets.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 9.2)
     A reaction: [C.Menzel 1986] This is one of many manoeuvres available if you want to distance mathematics from set theory.