structure for 'Formal Logic'    |     alphabetical list of themes    |     unexpand these ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX

[axiom for a new set by sampling]

34 ideas
The British parliament has one representative selected from each constituency [Russell]
     Full Idea: We have a class of representatives, who make up our Parliament, one being selected out of each constituency.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: You can rely on Russell for the clearest illustrations of these abstract ideas. He calls the Axiom of Choice the 'Multiplicative' Axiom.
Choice shows that if any two cardinals are not equal, one must be the greater [Russell]
     Full Idea: The [Axiom of Choice] is also equivalent to the assumption that of any two cardinals which are not equal, one must be the greater.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: It is illuminating for the uninitiated to learn that this result can't be taken for granted (with infinite cardinals).
Choice is equivalent to the proposition that every class is well-ordered [Russell]
     Full Idea: Zermelo has shown that [the Axiom of Choice] is equivalent to the proposition that every class is well-ordered, i.e. can be arranged in a series in which every sub-class has a first term (except, of course, the null class).
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: Russell calls Choice the 'Multiplicative' Axiom.
We can pick all the right or left boots, but socks need Choice to insure the representative class [Russell]
     Full Idea: Among boots we distinguish left and right, so we can choose all the right or left boots; with socks no such principle suggests itself, and we cannot be sure, without the [Axiom of Choice], that there is a class consisting of one sock from each pair.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: A deservedly famous illustration of a rather tricky part of set theory.
The Axiom of Choice needs a criterion of choice [Black]
     Full Idea: Some mathematicians seem to think that talk of an Axiom of Choice allows them to choose a single member of a collection when there is no criterion of choice.
     From: Max Black (The Identity of Indiscernibles [1952], p.68)
To associate a cardinal with each set, we need the Axiom of Choice to find a representative [Dummett]
     Full Idea: We may suppose that with each set is associated an object as its cardinal number, but we have no systematic way, without appeal to the Axiom of Choice, of selecting a representative set of each cardinality.
     From: Michael Dummett (Frege Philosophy of Language (2nd ed) [1973], Ch.14)
We can only define functions if Choice tells us which items are involved [Enderton]
     Full Idea: For functions, we know that for any y there exists an appropriate x, but we can't yet form a function H, as we have no way of defining one particular choice of x. Hence we need the axiom of choice.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:48)
The axiom of choice now seems acceptable and obvious (if it is meaningful) [Tharp]
     Full Idea: The main objection to the axiom of choice was that it had to be given by some law or definition, but since sets are arbitrary this seems irrelevant. Formalists consider it meaningless, but set-theorists consider it as true, and practically obvious.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §3)
The axiom of choice must accept an indeterminate, indefinable, unconstructible set [Badiou]
     Full Idea: The axiom of choice actually amounts to admitting an absolutely indeterminate infinite set whose existence is asserted albeit remaining linguistically indefinable. On the other hand, as a process, it is unconstructible.
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: If only constructible sets are admitted (see 'V = L') then there is a contradiction.
The Axiom of Choice relies on reference to sets that we are unable to describe [Bostock]
     Full Idea: The usual accounts of ZF are not restricted to subsets that we can describe, and that is what justifies the axiom of choice.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4 n36)
     A reaction: This contrasts interestingly with predicativism, which says we can only discuss things which we can describe or define. Something like verificationism hovers in the background.
The old problems with the axiom of choice are probably better ascribed to the law of excluded middle [Parsons,C]
     Full Idea: The difficulties historically attributed to the axiom of choice are probably better ascribed to the law of excluded middle.
     From: Charles Parsons (Review of Tait 'Provenance of Pure Reason' [2009], §2)
     A reaction: The law of excluded middle was a target for the intuitionists, so presumably the debate went off in that direction.
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
Choice suggests that intensions are not needed to ensure classes [Coffa]
     Full Idea: The axiom of choice was an assumption that implicitly questioned the necessity of intensions to guarantee the presence of classes.
     From: J. Alberto Coffa (The Semantic Tradition from Kant to Carnap [1991], 7 'Log')
     A reaction: The point is that Choice just picks out members for no particular reason. So classes, it seems, don't need a reason to exist.
With the Axiom of Choice every set can be well-ordered [Hart,WD]
     Full Idea: It follows from the Axiom of Choice that every set can be well-ordered.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: For 'well-ordered' see Idea 13460. Every set can be ordered with a least member.
We can choose from finite and evident sets, but not from infinite opaque ones [Hart,WD]
     Full Idea: When a set is finite, we can prove it has a choice function (∀x x∈A → f(x)∈A), but we need an axiom when A is infinite and the members opaque. From infinite shoes we can pick a left one, but from socks we need the axiom of choice.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: The socks example in from Russell 1919:126.
Efforts to prove the Axiom of Choice have failed [Maddy]
     Full Idea: Jordain made consistent and ill-starred efforts to prove the Axiom of Choice.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: This would appear to be the fate of most axioms. You would presumably have to use a different system from the one you are engaged with to achieve your proof.
Modern views say the Choice set exists, even if it can't be constructed [Maddy]
     Full Idea: Resistance to the Axiom of Choice centred on opposition between existence and construction. Modern set theory thrives on a realistic approach which says the choice set exists, regardless of whether it can be defined, constructed, or given by a rule.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: This seems to be a key case for the ontology that lies at the heart of theory. Choice seems to be an invaluable tool for proofs, so it won't go away, so admit it to the ontology. Hm. So the tools of thought have existence?
A large array of theorems depend on the Axiom of Choice [Maddy]
     Full Idea: Many theorems depend on the Axiom of Choice, including that a countable union of sets is countable, and results in analysis, topology, abstract algebra and mathematical logic.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: The modern attitude seems to be to admit anything if it leads to interesting results. It makes you wonder about the modern approach of using mathematics and logic as the cutting edges of ontological thinking.
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
     Full Idea: One feature of the Axiom of Choice that troubled many mathematicians was the so-called Banach-Tarski paradox: using the Axiom, a sphere can be decomposed into finitely many parts and those parts reassembled into two spheres the same size as the original.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
     A reaction: (The key is that the parts are non-measurable). To an outsider it is puzzling that the Axiom has been universally accepted, even though it produces such a result. Someone can explain that, I'm sure.
Choice is essential for proving downward Löwenheim-Skolem [Shapiro]
     Full Idea: The axiom of choice is essential for proving the downward Löwenheim-Skolem Theorem.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
The axiom of choice is controversial, but it could be replaced [Shapiro]
     Full Idea: The axiom of choice has a troubled history, but is now standard in mathematics. It could be replaced with a principle of comprehension for functions), or one could omit the variables ranging over functions.
     From: Stewart Shapiro (Higher-Order Logic [2001], n 3)
Axiom of Choice: some function has a value for every set in a given set [Shapiro]
     Full Idea: One version of the Axiom of Choice says that for every set A of nonempty sets, there is a function whose domain is A and whose value, for every a ∈ A, is a member of a.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 1)
The Axiom of Choice seems to license an infinite amount of choosing [Shapiro]
     Full Idea: If the Axiom of Choice says we can choose one member from each of a set of non-empty sets and put the chosen elements together in a set, this licenses the constructor to do an infinite amount of choosing.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 6.3)
     A reaction: This is one reason why the Axiom was originally controversial, and still is for many philosophers.
Using Choice, you can cut up a small ball and make an enormous one from the pieces [Kaplan/Kaplan]
     Full Idea: The problem with the Axiom of Choice is that it allows an initiate (by an ingenious train of reasoning) to cut a golf ball into a finite number of pieces and put them together again to make a globe as big as the sun.
     From: R Kaplan / E Kaplan (The Art of the Infinite [2003], 9)
     A reaction: I'm not sure how this works (and I think it was proposed by the young Tarski), but it sounds like a real problem to me, for all the modern assumptions that Choice is fine.
Choice: For every set a mechanism will choose one member of any non-empty subset [Clegg]
     Full Idea: Axiom of Choice: For every set we can provide a mechanism for choosing one member of any non-empty subset of the set.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: This axiom is unusual because it makes the bold claim that such a 'mechanism' can always be found. Cohen showed that this axiom is separate. The tricky bit is choosing from an infinite subset.
Cantor's theories needed the Axiom of Choice, but it has led to great controversy [Feferman/Feferman]
     Full Idea: The Axiom of Choice is a pure existence statement, without defining conditions. It was necessary to provide a foundation for Cantor's theory of transfinite cardinals and ordinal numbers, but its nonconstructive character engendered heated controversy.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
The Axiom of Choice is consistent with the other axioms of set theory [Feferman/Feferman]
     Full Idea: In 1938 Gödel proved that the Axiom of Choice is consistent with the other axioms of set theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: Hence people now standardly accept ZFC, rather than just ZF.
Axiom of Choice: a set exists which chooses just one element each of any set of sets [Feferman/Feferman]
     Full Idea: Zermelo's Axiom of Choice asserts that for any set of non-empty sets that (pairwise) have no elements in common, then there is a set that 'simultaneously chooses' exactly one element from each set. Note that this is an existential claim.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: The Axiom is now widely accepted, after much debate in the early years. Even critics of the Axiom turn out to be relying on it.
Platonist will accept the Axiom of Choice, but others want criteria of selection or definition [Feferman/Feferman]
     Full Idea: The Axiom of Choice seems clearly true from the Platonistic point of view, independently of how sets may be defined, but is rejected by those who think such existential claims must show how to pick out or define the object claimed to exist.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: The typical critics are likely to be intuitionists or formalists, who seek for both rigour and a plausible epistemology in our theory.
The Trichotomy Principle is equivalent to the Axiom of Choice [Feferman/Feferman]
     Full Idea: The Trichotomy Principle (any number is less, equal to, or greater than, another number) turned out to be equivalent to the Axiom of Choice.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: [He credits Sierpinski (1918) with this discovery]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
     Full Idea: The controversy was not about Choice per se, but about the correct notion of function - between advocates of taking mathematics to be about arbitrary functions and advocates of taking it to be about functions given by rules.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
     Full Idea: Combinatorial collections (defined just by the members) obviously obey the Axiom of Choice, while it is at best dubious whether logical connections (defined by a rule) do.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
The Axiom of Choice is a non-logical principle of set-theory [Hossack]
     Full Idea: The Axiom of Choice seems better treated as a non-logical principle of set-theory.
     From: Keith Hossack (Plurals and Complexes [2000], 4 n8)
     A reaction: This reinforces the idea that set theory is not part of logic (and so pure logicism had better not depend on set theory).
The Axiom of Choice guarantees a one-one correspondence from sets to ordinals [Hossack]
     Full Idea: We cannot explicitly define one-one correspondence from the sets to the ordinals (because there is no explicit well-ordering of R). Nevertheless, the Axiom of Choice guarantees that a one-one correspondence does exist, even if we cannot define it.
     From: Keith Hossack (Plurals and Complexes [2000], 10)