structure for 'Theory of Logic'    |     alphabetical list of themes    |     unexpand these ideas

5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems

[group of theorems about models involving infinities]

24 ideas
If a 1st-order proposition is satisfied, it is satisfied in a denumerably infinite domain [Skolem]
     Full Idea: Löwenheim's theorem reads as follows: If a first-order proposition is satisfied in any domain at all, it is already satisfied in a denumerably infinite domain.
     From: Thoralf Skolem (Remarks on axiomatised set theory [1922], p.293)
The Löwenheim-Skolem Theorem is close to an antinomy in philosophy of language [Putnam]
     Full Idea: The Löwenheim-Skolem Theorem says that a satisfiable first-order theory (in a countable language) has a countable model. ..I argue that this is not a logical antinomy, but close to one in philosophy of language.
     From: Hilary Putnam (Models and Reality [1977], p.421)
     A reaction: See the rest of this paper for where he takes us on this.
The Löwenheim-Skolem property is a limitation (e.g. can't say there are uncountably many reals) [Tharp]
     Full Idea: The Löwenheim-Skolem property seems to be undesirable, in that it states a limitation concerning the distinctions the logic is capable of making, such as saying there are uncountably many reals ('Skolem's Paradox').
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
Skolem mistakenly inferred that Cantor's conceptions were illusory [Tharp]
     Full Idea: Skolem deduced from the Löwenheim-Skolem theorem that 'the absolutist conceptions of Cantor's theory' are 'illusory'. I think it is clear that this conclusion would not follow even if elementary logic were in some sense the true logic, as Skolem assumed.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §7)
     A reaction: [Tharp cites Skolem 1962 p.47] Kit Fine refers to accepters of this scepticism about the arithmetic of infinities as 'Skolemites'.
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
Up Löwenheim-Skolem: if infinite models, then arbitrarily large models [Hodges,W]
     Full Idea: Upward Löwenheim-Skolem: every first-order theory with infinite models has arbitrarily large models.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.10)
Down Löwenheim-Skolem: if a countable language has a consistent theory, that has a countable model [Hodges,W]
     Full Idea: Downward Löwenheim-Skolem (the weakest form): If L is a first-order language with at most countably many formulas, and T is a consistent theory in L. Then T has a model with at most countably many elements.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.10)
Löwenheim-Skolem says any theory with a true interpretation has a model in the natural numbers [White,NP]
     Full Idea: The Löwenheim-Skolem theorem tells us that any theory with a true interpretation has a model in the natural numbers.
     From: Nicholas P. White (What Numbers Are [1974], V)
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
     Full Idea: No logic which can axiomatize real analysis can have the Löwenheim-Skolem property.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
The Löwenheim-Skolem theorems show an explosion of infinite models, so 1st-order is useless for infinity [Shapiro]
     Full Idea: The Löwenheim-Skolem theorems mean that no first-order theory with an infinite model is categorical. If Γ has an infinite model, then it has a model of every infinite cardinality. So first-order languages cannot characterize infinite structures.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
     A reaction: So much of the debate about different logics hinges on characterizing 'infinite structures' - whatever they are! Shapiro is a leading structuralist in mathematics, so he wants second-order logic to help with his project.
Downward Löwenheim-Skolem: each satisfiable countable set always has countable models [Shapiro]
     Full Idea: A language has the Downward Löwenheim-Skolem property if each satisfiable countable set of sentences has a model whose domain is at most countable.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
     A reaction: This means you can't employ an infinite model to represent a fact about a countable set.
Upward Löwenheim-Skolem: each infinite model has infinite models of all sizes [Shapiro]
     Full Idea: A language has the Upward Löwenheim-Skolem property if for each set of sentences whose model has an infinite domain, then it has a model at least as big as each infinite cardinal.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
     A reaction: This means you can't have a countable model to represent a fact about infinite sets.
Substitutional semantics only has countably many terms, so Upward Löwenheim-Skolem trivially fails [Shapiro]
     Full Idea: The Upward Löwenheim-Skolem theorem fails (trivially) with substitutional semantics. If there are only countably many terms of the language, then there are no uncountable substitution models.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1.4)
     A reaction: Better and better. See Idea 13674. Why postulate more objects than you can possibly name? I'm even suspicious of all real numbers, because you can't properly define them in finite terms. Shapiro objects that the uncountable can't be characterized.
Up Löwenheim-Skolem: if natural numbers satisfy wffs, then an infinite domain satisfies them [Shapiro]
     Full Idea: Upward Löwenheim-Skolem: if a set of first-order formulas is satisfied by a domain of at least the natural numbers, then it is satisfied by a model of at least some infinite cardinal.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
Downward Löwenheim-Skolem: if there's an infinite model, there is a countable model [Shapiro]
     Full Idea: Downward Löwenheim-Skolem: a finite or denumerable set of first-order formulas that is satisfied by a model whose domain is infinite is satisfied in a model whose domain is the natural numbers
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
The Löwenheim-Skolem Theorems fail for second-order languages with standard semantics [Shapiro]
     Full Idea: Both of the Löwenheim-Skolem Theorems fail for second-order languages with a standard semantics
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.3.2)
The Löwenheim-Skolem theorem seems to be a defect of first-order logic [Shapiro]
     Full Idea: The Löwenheim-Skolem theorem is usually taken as a sort of defect (often thought to be inevitable) of the first-order logic.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: [He is quoting Wang 1974 p.154]
Any theory with an infinite model has a model of every infinite cardinality [Shapiro]
     Full Idea: The Löwenheim-Skolem theorems (which apply to first-order formal theories) show that any theory with an infinite model has a model of every infinite cardinality.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.8)
     A reaction: This aspect of the theorems is the Skolem Paradox. Shapiro argues that in first-order this infinity of models for arithmetic must be accepted, but he defends second-order model theory, where 'standard' models can be selected.
Any first-order theory of sets is inadequate [Read]
     Full Idea: Any first-order theory of sets is inadequate because of the Löwenheim-Skolem-Tarski property, and the consequent Skolem paradox.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: The limitation is in giving an account of infinities.
Löwenheim-Skolem says if the sentences are countable, so is the model [Feferman/Feferman]
     Full Idea: The Löwenheim-Skolem Theorem, the earliest in model theory, states that if a countable set of sentences in a first-order language has a model, then it has a countable model.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: There are 'upward' (sentences-to-model) and 'downward' (model-to-sentences) versions of the theory.
Löwenheim-Skolem Theorem, and Gödel's completeness of first-order logic, the earliest model theory [Feferman/Feferman]
     Full Idea: Before Tarski's work in the 1930s, the main results in model theory were the Löwenheim-Skolem Theorem, and Gödel's establishment in 1929 of the completeness of the axioms and rules for the classical first-order predicate (or quantificational) calculus.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
The LST Theorem is a serious limitation of first-order logic [Wolf,RS]
     Full Idea: The Löwenheim-Skolem-Tarski theorem demonstrates a serious limitation of first-order logic, and is one of primary reasons for considering stronger logics.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.7)
The L-S Theorem says no theory (even of reals) says more than a natural number theory [Walicki]
     Full Idea: The L-S Theorem is ...a shocking result, since it implies that any consistent formal theory of everything - even about biology, physics, sets or the real numbers - can just as well be understood as being about natural numbers. It says nothing more.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2)
     A reaction: Illuminating. Particularly the point that no theory about the real numbers can say anything more than a theory about the natural numbers. So the natural numbers contain all the truths we can ever express? Eh?????
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
     Full Idea: Löwenheim proved that if a first-order sentence has a model at all, it has a countable model. ...Skolem generalised this result to systems of first-order sentences.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)