structure for 'Mathematics'    |     alphabetical list of themes    |     unexpand these ideas

6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry

[formal starting points for deriving geometry]

21 ideas
Euclid relied on obvious properties in diagrams, as well as on his axioms [Potter on Euclid]
     Full Idea: Euclid's axioms were insufficient to derive all the theorems of geometry: at various points in his proofs he appealed to properties that are obvious from the diagrams but do not follow from the stated axioms.
     From: comment on Euclid (Elements of Geometry [c.290 BCE]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 03 'aim'
     A reaction: I suppose if the axioms of a system are based on self-evidence, this would licence an appeal to self-evidence elsewhere in the system. Only pedants insist on writing down what is obvious to everyone!
Euclid's parallel postulate defines unique non-intersecting parallel lines [Euclid, by Friend]
     Full Idea: Euclid's fifth 'parallel' postulate says if there is an infinite straight line and a point, then there is only one straight line through the point which won't intersect the first line. This axiom is independent of Euclid's first four (agreed) axioms.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Michèle Friend - Introducing the Philosophy of Mathematics 2.2
     A reaction: This postulate was challenged in the nineteenth century, which was a major landmark in the development of modern relativist views of knowledge.
Euclid needs a principle of continuity, saying some lines must intersect [Shapiro on Euclid]
     Full Idea: Euclid gives no principle of continuity, which would sanction an inference that if a line goes from the outside of a circle to the inside of circle, then it must intersect the circle at some point.
     From: comment on Euclid (Elements of Geometry [c.290 BCE]) by Stewart Shapiro - Philosophy of Mathematics 6.1 n2
     A reaction: Cantor and Dedekind began to contemplate discontinuous lines.
Euclid says we can 'join' two points, but Hilbert says the straight line 'exists' [Euclid, by Bernays]
     Full Idea: Euclid postulates: One can join two points by a straight line; Hilbert states the axiom: Given any two points, there exists a straight line on which both are situated.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Paul Bernays - On Platonism in Mathematics p.259
Modern geometries only accept various parts of the Euclid propositions [Russell on Euclid]
     Full Idea: In descriptive geometry the first 26 propositions of Euclid hold. In projective geometry the 1st, 7th, 16th and 17th require modification (as a straight line is not a closed series). Those after 26 depend on the postulate of parallels, so aren't assumed.
     From: comment on Euclid (Elements of Geometry [c.290 BCE]) by Bertrand Russell - The Principles of Mathematics §388
Archimedes defined a straight line as the shortest distance between two points [Archimedes, by Leibniz]
     Full Idea: Archimedes gave a sort of definition of 'straight line' when he said it is the shortest line between two points.
     From: report of Archimedes (fragments/reports [c.240 BCE]) by Gottfried Leibniz - New Essays on Human Understanding 4.13
     A reaction: Commentators observe that this reduces the purity of the original Euclidean axioms, because it involves distance and measurement, which are absent from the purest geometry.
We shouldn't just accept Euclid's axioms, but try to demonstrate them [Leibniz]
     Full Idea: Far from approving the acceptance of doubtful principles, I want to see an attempt to demonstrate even Euclid's axioms, as some of the ancients tried to do.
     From: Gottfried Leibniz (New Essays on Human Understanding [1704], 1.02)
     A reaction: This is the old idea of axioms, as a bunch of basic self-evident truths, rather than the modern idea of an economical set of propositions from which to make deductions. Demonstration has to stop somewhere.
Euclid's could be the only viable geometry, if rejection of the parallel line postulate doesn't lead to a contradiction [Benardete,JA on Kant]
     Full Idea: The possible denial of the parallel lines postulate does not entail that Kant was wrong in considering Euclid's the only viable geometry. If the denial issued in a contradiction, then the postulate would be analytic, and Kant would be refuted.
     From: comment on Immanuel Kant (Critique of Pure Reason [1781]) by José A. Benardete - Metaphysics: the logical approach Ch.18
The whole of Euclidean geometry derives from a basic equation and transformations [Hilbert]
     Full Idea: The linearity of the equation of the plane and of the orthogonal transformation of point-coordinates is completely adequate to produce the whole broad science of spatial Euclidean geometry purely by means of analysis.
     From: David Hilbert (Axiomatic Thought [1918], [05])
     A reaction: This remark comes from the man who succeeded in producing modern axioms for geometry (in 1897), so he knows what he is talking about. We should not be wholly pessimistic about Hilbert's ambitious projects. He had to dig deeper than this idea...
Euclid axioms concerns possibilities of construction, but Hilbert's assert the existence of objects [Hilbert, by Chihara]
     Full Idea: Hilbert's geometrical axioms were existential in character, asserting the existence of certain geometrical objects (points and lines). Euclid's postulates do not assert the existence of anything; they assert the possibility of certain constructions.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Charles Chihara - A Structural Account of Mathematics 01.1
     A reaction: Chihara says geometry was originally understood modally, but came to be understood existentially. It seems extraordinary to me that philosophers of mathematics can have become more platonist over the centuries.
Hilbert's formalisation revealed implicit congruence axioms in Euclid [Hilbert, by Horsten/Pettigrew]
     Full Idea: In his formal investigation of Euclidean geometry, Hilbert uncovered congruence axioms that implicitly played a role in Euclid's proofs but were not explicitly recognised.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Horsten,L/Pettigrew,R - Mathematical Methods in Philosophy 2
     A reaction: The writers are offering this as a good example of the benefits of a precise and formal approach to foundational questions. It's hard to disagree, but dispiriting if you need a PhD in maths before you can start doing philosophy.
Hilbert's geometry is interesting because it captures Euclid without using real numbers [Hilbert, by Field,H]
     Full Idea: Hilbert's formulation of the Euclidean theory is of special interest because (besides being rigorously axiomatised) it does not employ the real numbers in the axioms.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Hartry Field - Science without Numbers 3
     A reaction: Notice that this job was done by Hilbert, and not by the fictionalist Hartry Field.
Geometry is united by the intuitive axioms of projective geometry [Russell, by Musgrave]
     Full Idea: Russell sought what was common to Euclidean and non-Euclidean systems, found it in the axioms of projective geometry, and took a Kantian view of them.
     From: report of Bertrand Russell (Foundations of Geometry [1897]) by Alan Musgrave - Logicism Revisited §4
     A reaction: Russell's work just preceded Hilbert's famous book. Tarski later produced some logical axioms for geometry.
Tarski improved Hilbert's geometry axioms, and without set-theory [Tarski, by Feferman/Feferman]
     Full Idea: Tarski found an elegant new axiom system for Euclidean geometry that improved Hilbert's earlier version - and he formulated it without the use of set-theoretical notions.
     From: report of Alfred Tarski (works [1936]) by Feferman / Feferman - Alfred Tarski: life and logic Ch.9
There are four different possible conventional accounts of geometry [Quine]
     Full Idea: We can construe geometry by 1) identifying it with algebra, which is then defined on the basis of logic; 2) treating it as hypothetical statements; 3) defining it contextually; or 4) making it true by fiat, without making it part of logic.
     From: Willard Quine (Truth by Convention [1935], p.99)
     A reaction: [Very compressed] I'm not sure how different 3 is from 2. These are all ways to treat geometry conventionally. You could be more traditional, and say that it is a description of actual space, but the multitude of modern geometries seems against this.
Modern axioms of geometry do not need the real numbers [Bostock]
     Full Idea: A modern axiomatisation of geometry, such as Hilbert's (1899), does not need to claim the existence of real numbers anywhere in its axioms.
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5.ii)
     A reaction: This is despite the fact that geometry is reduced to algebra, and the real numbers are the equivalent of continuous lines. Bostock votes for a Greek theory of proportion in this role.
'Metric' axioms uses functions, points and numbers; 'synthetic' axioms give facts about space [Field,H]
     Full Idea: There are two approaches to axiomatising geometry. The 'metric' approach uses a function which maps a pair of points into the real numbers. The 'synthetic' approach is that of Euclid and Hilbert, which does without real numbers and functions.
     From: Hartry Field (Science without Numbers [1980], 5)
Euclid has a unique parallel, spherical geometry has none, and saddle geometry has several [Hart,WD]
     Full Idea: There is a familiar comparison between Euclid (unique parallel) and 'spherical' geometry (no parallel) and 'saddle' geometry (several parallels).
     From: William D. Hart (The Evolution of Logic [2010], 2)
Analytic geometry gave space a mathematical structure, which could then have axioms [Chihara]
     Full Idea: With the invention of analytic geometry (by Fermat and then Descartes) physical space could be represented as having a mathematical structure, which could eventually lead to its axiomatization (by Hilbert).
     From: Charles Chihara (A Structural Account of Mathematics [2004], 02.3)
     A reaction: The idea that space might have axioms seems to be pythagoreanism run riot. I wonder if there is some flaw at the heart of Einstein's General Theory because of this?
The culmination of Euclidean geometry was axioms that made all models isomorphic [McGee]
     Full Idea: One of the culminating achievements of Euclidean geometry was categorical axiomatisations, that describe the geometric structure so completely that any two models of the axioms are isomorphic. The axioms are second-order.
     From: Vann McGee (Logical Consequence [2014], 7)
     A reaction: [He cites Veblen 1904 and Hilbert 1903] For most mathematicians, categorical axiomatisation is the best you can ever dream of (rather than a single true axiomatisation).
In non-Euclidean geometry, all Euclidean theorems are valid that avoid the fifth postulate [Walicki]
     Full Idea: Since non-Euclidean geometry preserves all Euclid's postulates except the fifth one, all the theorems derived without the use of the fifth postulate remain valid.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)