structure for 'Mathematics'    |     alphabetical list of themes    |     unexpand these ideas

6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis

[denial of a cardinality between naturals are reals]

15 ideas
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
     Full Idea: Cantor's Continuum Hypothesis (CH) says that for every infinite set X of reals there is either a one-to-one correspondence between X and the natural numbers, or between X and the real numbers.
     From: report of George Cantor (works [1880]) by Peter Koellner - On the Question of Absolute Undecidability 1.2
     A reaction: Every single writer I read defines this differently, which drives me crazy, but is also helpfully illuminating. There is a moral there somewhere.
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
     Full Idea: Cantor conjectured that there is no size between those of the naturals and the reals - called the 'continuum hypothesis'. The generalized version says that for no infinite set A is there a set larger than A but smaller than P(A).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: Thus there are gaps between infinite numbers, and the power set is the next size up from any infinity. Much discussion as ensued about whether these two can be proved.
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
     Full Idea: Cantor's Continuum Hypothesis states that there are no sets which are too large for there to be a one-to-one correspondence between the set and the natural numbers, but too small for there to exist a one-to-one correspondence with the real numbers.
     From: report of George Cantor (works [1880]) by Leon Horsten - Philosophy of Mathematics §5.1
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
     Full Idea: Cantor's 'continuum hypothesis' is the assertion that there are no infinite cardinalities strictly between the size of the natural numbers and the size of the real numbers.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Thinking About Mathematics 2.4
     A reaction: The tricky question is whether this hypothesis can be proved.
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
     Full Idea: Cantor's conjecture (the Continuum Hypothesis) is that there are no sets between N and P(N). The 'generalized' version replaces N with an arbitrary infinite set.
     From: report of George Cantor (works [1880]) by Robert S. Wolf - A Tour through Mathematical Logic 2.2
     A reaction: The initial impression is that there is a single gap in the numbers, like a hole in ozone layer, but the generalised version implies an infinity of gaps. How can there be gaps in the numbers? Weird.
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
     Full Idea: Cantor's Continuum Hypothesis was that there is no cardinal number greater than aleph-null but less than the cardinality of the continuum.
     From: report of George Cantor (works [1880]) by Charles Chihara - A Structural Account of Mathematics 05.1
     A reaction: I have no view on this (have you?), but the proposal that there are gaps in the number sequences has to excite all philosophers.
If set theory is consistent, we cannot refute or prove the Continuum Hypothesis [Gödel, by Hart,WD]
     Full Idea: Gödel proved that (if set theory is consistent) we cannot refute the continuum hypothesis, and Cohen proved that (if set theory is consistent) we cannot prove it either.
     From: report of Kurt Gödel (What is Cantor's Continuum Problem? [1964]) by William D. Hart - The Evolution of Logic 10
The Continuum Hypothesis is not inconsistent with the axioms of set theory [Gödel, by Clegg]
     Full Idea: Gödel proved that the Continuum Hypothesis was not inconsistent with the axioms of set theory.
     From: report of Kurt Gödel (What is Cantor's Continuum Problem? [1964]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15
The generalized Continuum Hypothesis asserts a discontinuity in cardinal numbers [Gödel]
     Full Idea: The generalized Continuum Hypothesis says that there exists no cardinal number between the power of any arbitrary set and the power of the set of its subsets.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.464)
The undecidability of the Continuum Hypothesis may have ruined or fragmented set theory [Badiou]
     Full Idea: As we have known since Paul Cohen's theorem, the Continuum Hypothesis is intrinsically undecidable. Many believe Cohen's discovery has driven the set-theoretic project into ruin, or 'pluralized' what was once presented as a unified construct.
     From: Alain Badiou (Briefings on Existence [1998], 6)
     A reaction: Badiou thinks the theorem completes set theory, by (roughly) finalising its map.
The General Continuum Hypothesis and its negation are both consistent with ZF [Hallett,M]
     Full Idea: In 1938, Gödel showed that ZF plus the General Continuum Hypothesis is consistent if ZF is. Cohen showed that ZF and not-GCH is also consistent if ZF is, which finally shows that neither GCH nor ¬GCH can be proved from ZF itself.
     From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1217)
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
     Full Idea: One form of the Continuum Hypothesis is the claim that every infinite set of reals is either countable or of the same size as the full set of reals.
     From: Penelope Maddy (Defending the Axioms [2011], 2.4 n40)
The 'continuum' is the cardinality of the powerset of a denumerably infinite set [Shapiro]
     Full Idea: The 'continuum' is the cardinality of the powerset of a denumerably infinite set.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5.1.2)
The 'continuum hypothesis' says aleph-one is the cardinality of the reals [Clegg]
     Full Idea: The 'continuum hypothesis' says that aleph-one is the cardinality of the rational and irrational numbers.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.14)
The Continuum Hypothesis is independent of the axioms of set theory [Clegg]
     Full Idea: Paul Cohen showed that the Continuum Hypothesis is independent of the axioms of set theory.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)