structure for 'Theory of Logic'    |     alphabetical list of themes    |     unexpand these ideas

5. Theory of Logic / H. Proof Systems / 4. Natural Deduction

[proofs built from introduction and elimination rules]

14 ideas
Natural deduction shows the heart of reasoning (and sequent calculus is just a tool) [Gentzen, by Hacking]
     Full Idea: Gentzen thought that his natural deduction gets at the heart of logical reasoning, and used the sequent calculus only as a convenient tool for proving his chief results.
     From: report of Gerhard Gentzen (Investigations into Logical Deduction [1935]) by Ian Hacking - What is Logic? §05
Natural deduction takes proof from assumptions (with its rules) as basic, and axioms play no part [Bostock]
     Full Idea: Natural deduction takes the notion of proof from assumptions as a basic notion, ...so it will use rules for use in proofs from assumptions, and axioms (as traditionally understood) will have no role to play.
     From: David Bostock (Intermediate Logic [1997], 6.1)
     A reaction: The main rules are those for introduction and elimination of truth functors.
Natural deduction rules for → are the Deduction Theorem (→I) and Modus Ponens (→E) [Bostock]
     Full Idea: Natural deduction adopts for → as rules the Deduction Theorem and Modus Ponens, here called →I and →E. If ψ follows φ in the proof, we can write φ→ψ (→I). φ and φ→ψ permit ψ (→E).
     From: David Bostock (Intermediate Logic [1997], 6.2)
     A reaction: Natural deduction has this neat and appealing way of formally introducing or eliminating each connective, so that you know where you are, and you know what each one means.
Excluded middle is an introduction rule for negation, and ex falso quodlibet will eliminate it [Bostock]
     Full Idea: Many books take RAA (reductio) and DNE (double neg) as the natural deduction introduction- and elimination-rules for negation, but RAA is not a natural introduction rule. I prefer TND (tertium) and EFQ (ex falso) for ¬-introduction and -elimination.
     From: David Bostock (Intermediate Logic [1997], 6.2)
In natural deduction we work from the premisses and the conclusion, hoping to meet in the middle [Bostock]
     Full Idea: When looking for a proof of a sequent, the best we can do in natural deduction is to work simultaneously in both directions, forward from the premisses, and back from the conclusion, and hope they will meet in the middle.
     From: David Bostock (Intermediate Logic [1997], 6.5)
The Deduction Theorem is what licenses a system of natural deduction [Bostock]
     Full Idea: The Deduction Theorem is what licenses a system of 'natural deduction' in the first place.
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
In natural deduction, inferences are atomic steps involving just one logical constant [Prawitz]
     Full Idea: In Gentzen's natural deduction, the inferences are broken down into atomic steps in such a way that each step involves only one logical constant. The steps are the introduction or elimination of the logical constants.
     From: Dag Prawitz (Gentzen's Analysis of First-Order Proofs [1974], 1.1)
A 'natural deduction system' has no axioms but many rules [Smith,P]
     Full Idea: A 'natural deduction system' will have no logical axioms but may rules of inference.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 09.1)
     A reaction: He contrasts this with 'Hilbert-style systems', which have many axioms but few rules. Natural deduction uses many assumptions which are then discharged, and so tree-systems are good for representing it.
Or-elimination is 'Argument by Cases'; it shows how to derive C from 'A or B' [Williamson]
     Full Idea: Argument by Cases (or or-elimination) is the standard way of using disjunctive premises. If one can argue from A and some premises to C, and from B and some premises to C, one can argue from 'A or B' and the combined premises to C.
     From: Timothy Williamson (Vagueness [1994], 5.3)
Natural deduction helpfully allows reasoning with assumptions [Sider]
     Full Idea: The method of natural deduction is popular in introductory textbooks since it allows reasoning with assumptions.
     From: Theodore Sider (Logic for Philosophy [2010], 2.5)
     A reaction: Reasoning with assumptions is generally easier, rather than being narrowly confined to a few tricky axioms, You gradually show that an inference holds whatever the assumption was, and so end up with the same result.
Unlike axiom proofs, natural deduction proofs needn't focus on logical truths and theorems [Hale]
     Full Idea: In contrast with axiomatic systems, in natural deductions systems of logic neither the premises nor the conclusions of steps in a derivation need themselves be logical truths or theorems of logic.
     From: Bob Hale (Necessary Beings [2013], 09.2 n7)
     A reaction: Not sure I get that. It can't be that everything in an axiomatic proof has to be a logical truth. How would you prove anything about the world that way? I'm obviously missing something.
Many-valued logics lack a natural deduction system [Mares]
     Full Idea: Many-valued logics do not have reasonable natural deduction systems.
     From: Edwin D. Mares (Negation [2014], 1)
'Tonk' is supposed to follow the elimination and introduction rules, but it can't be so interpreted [Sider]
     Full Idea: 'Tonk' is stipulated by Prior to stand for a meaning that obeys the elimination and introduction rules; but there simply is no such meaning; 'tonk' cannot be interpreted so as to obey the rules.
     From: Theodore Sider (Writing the Book of the World [2011], 06.5)
     A reaction: 'Tonk' thus seems to present a problem for so-called 'natural' deduction, if the natural deduction consists of nothing more than obey elimination and introduction rules.
Introduction rules give deduction conditions, and Elimination says what can be deduced [Rumfitt]
     Full Idea: 'Introduction rules' state the conditions under which one may deduce a conclusion whose dominant logical operator is the connective. 'Elimination rules' state what may be deduced from some premises, where the major premise is dominated by the connective.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
     A reaction: So Introduction gives conditions for deduction, and Elimination says what can actually be deduced. If my magic wand can turn you into a frog (introduction), and so I turn you into a frog, how does that 'eliminate' the wand?